
Automated Instantiation of Side-Channel Attacks
Countermeasures for Software Cipher

Implementations∗

Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

name.surname@polimi.it

July 25, 2019

Abstract

Side Channel Attacks (SCA) have proven to be a practical threat to the security
of embedded systems, exploiting the information leakage coming from unintended
channels concerning an implementation of a cryptographic primitive. Given the
large variety of embedded platforms, and the ubiquity of the need for secure cryp-
tographic implementations, a systematic and automated approach to deploy SCA
countermeasures at design time is strongly needed. In this paper, we provide an
overview of recent compiler-based techniques to protect software implementations
against SCA, making them amenable to automated application in the development
of secure-by-design systems.

Keywords – Design for security, Side channel attacks, compiler technology

1 Introduction
The widespread use of ultra-low power pervasive computing devices, both as means to
drive cyber-physical systems and to provide environmental and health sensing, has lead
to a significant increase in the amount of sensitive and security-critical data managed
by them. Practical examples of application domains include, financial transactions via
smart-cards, vehicle-to-vehicle communications, industrial sensor networks and pro-
cess control, and smart medical devices. Cryptographic primitives are the foundational
building-blocks to provide security and privacy assurances in complex computational
and communication systems. Indeed, a significant amount of commercially available

∗This is a preprint of the position paper with the same title appeared at ACM Computing Frontiers 2016,
http://dx.doi.org/10.1145/2903150.2911707

1

embedded devices is either endowed with a hardware cryptographic primitive acceler-
ator, or an optimized software library to provide data and communication security and
privacy.

However, in such a scenario, an additional threat model with respect to the usual
ones, opens up. An attacker may gain physical access to the target device and can
effectively exploit such access as a further advantage. Preventing the adverse effects of
such a threat model mandates a combined engineering effort in choosing cryptographic
primitives which are sound from a theoretical standpoint and carefully implemented
so that the large class of the so-called implementation attacks are warded off. The
choice of sound primitives can be effectively performed picking them among the well
scrutinized ones, which have been recognized as standards by international and national
entities such as the ISO/IEC committee or the US National Institute of Standards and
Technology (NIST), and choosing appropriate key lengths. By contrast, warding off
implementation attacks is still a challenging issue, and thus have been a stimulating
research topic.

The largest class of implementation attacks is represented by the so-called side-
channel attacks (SCAs), where the attacker exploits the information leakage happening
on an unintended channel, typically an environmental parameter of the computation
which is dependent on the computed data. Instances of such side-channels include
energy consumption, execution timing or electro-magnetic (EM) emanations: all these
environmental parameters provide enough information to infer the value of secret data
intended to be stored within the device in an otherwise un-accessible way.

In this work, the focus is on energy consumption based SCAs against block cipher
implementations, since open literature reports results of the successful breach of many
systems employing them which range from electronic tickets [18], intellectual prop-
erty protection schemes on large scale reconfigurable devices [22] to software imple-
mentations running on high end System on Chips (SoCs) endowed with a full fledged
operating system [12].

Designing efficient and effective countermeasures against side-channel attacks is a
topic which has received warm attention by the research community. Typically, coun-
termeasures against the aforementioned threats involve modifying the cipher at either
the algorithmic or the implementation level [4–6, 8], or changing the underlying hard-
ware architecture so to suppress the side-channel leakage.

In particular, while several works tackled the problem of providing security ori-
ented solutions for hardware designs [19, 23, 27], it is worth noting that a significant
number of embedded systems are built on top of general purpose platforms, and thus
rely on software-based encryption primitives. Software solutions provide a greater
design flexibility, a feature which has been acknowledged by the standardized crypto-
graphic protocols allowing a choice in the algorithms to be employed. Software-based
security layers are also employed as a fall-back solution in case the hardware based
ones are compromised, an increasing trend given the technological progress of inte-
grated circuits debugging and testing tools [14].

A significant number of countermeasure strategies for software implementations
of cryptographic primitives were proposed as tailored modifications to a given crypto-
graphic primitive so that its computation would not directly depend on the input data
and the secret parameters only. An alternate approach involves raising the technical

2

difficulty of gathering proper measurements of the side-channel, effectively hiding the
information sought by the attacker either inserting random delays in the computation,
or performing useless operations with the sole purpose of providing a smokescreen for
the useful ones [24].

The aforementioned strategies, albeit effective in foiling the efforts of the attacker,
were typically implemented tailoring them for a specific hardware-software stack, with
a significant number of them being encoded in assembly language. As a consequence,
tackling the challenge of providing side-channel security to the wide variety of devices
and architectures of modern embedded systems was particularly time consuming in
terms of re-engineering effort. This represented a significant hindrance to the prompt
adoption of such securization techniques on novel systems, due to the significant de-
velopment time requirements.

In order to overcome the said hindrance, a need for the automated design time
detection of side-channel vulnerabilities, and similarly the automated application of
countermeasures had risen. The first works aimed at highlighting the extent of the
information leakage on the energy consumption side-channel either employing direct
measurements on the target platform [13], or performing a static analysis of the code at
translation time [5]. Static analysis techniques have also proven successful in detect-
ing faulty countermeasures for which C implementations are provided. In particular,
in [17] the authors describe a Satisfiability Modulo Theorem solver to either state the
correctness of a C implementation, or provide a counterexample in the form of a viable
side-channel attack strategy.

Complementing the aforementioned solutions, which aim at discovering automati-
cally the extent of the side-channel vulnerability, another line of research explored the
automatic application of countermeasures to vulnerable portions of existing implemen-
tations. In [2, 5] the automatic application of countermeasures adding random values
to the vulnerable portion of the computation of a software implemented block ciphers
was realized as a set of passes in the LLVM compiler toolchain. Similarly, in [9] the
automated application of hiding countermeasures to software implementations was in-
vestigated. In particular, such a study examines the possible schedules of block cipher
instructions (at the level of LLVM intermediate representation), to execute the cipher
instructions in a different (legitimate) sequence at each run of the primitive and mini-
mize the computational overhead involved.

In addition to the automated application of existing countermeasures, in [4, 6]
the authors proposed a substantially different, and automatically applicable, approach
which changes dynamically the way a computation is performed, thus hindering the
attempts at building a model of how the sensitive information is leaked on the side-
channel altogether. Finally, in [7], the authors propose to automatically insert plausible
computations with fake keys to act as a bait for an attacker exploiting information leak-
age on the side-channel. Such an approach results in the attacker retrieving both the
correct key and the fake ones with the same confidence, thus forcing him to attempt to
breach the system with a possibly invalid key. Such an action can be detected, provid-
ing a way to spot an SCA attempt and actively react to it, e.g., by deleting the secret
key from the device or rendering it inoperable.

The rest of the paper briefly introduces the framework of an energy based SCA,
and describes the countermeasure strategies proposed. A review of the aforementioned

3

recent approaches to automated countermeasure application at design time is then pro-
vided, highlighting their advantages and disadvantages.

2 SCAs and Countermeasures
The typical workflow of an energy consumption based SCA recovers the value of the
secret parameter of a cipher (i.e., the secret key) one portion at a time. This is possi-
ble since, during a cryptographic computation, the algorithm combines the secret key
bits with other input/intermediate values involving a limited quantity of the former at a
time. The first step of the attack consists in measuring the energy consumption of the
target device, while computing the cryptographic primitive on a large set of different
(known) input messages. The measurements are performed either through inserting a
shunt resistor on the supply line of the device or measuring the EM emissions radiated
by it. Subsequently, an intermediate operation employing a small portion of the secret
key is selected, and hypotheses on its results are made for each of the inputs fed to the
circuit, and for each value the small key portion involved may take. Such hypotheses
on the results are used to derive a sequence of predictions of the energy consumption
for each possible value taken by the key portion. Finally, the predicted values are com-
pared with the actual measured ones through the use of statistical means (e.g., linear
correlation index or difference-of-means test) to find out which prediction fits best,
thus inferring the correct value of the key portion involved. Countermeasures aimed at
protecting cipher implementations are traditionally split in two large categories hiding
and masking [24].

Hiding For software implementations, these strategies hinder the matching between
the actual power measurements and the hypothesized consumption for each key-portion
guess through rescheduling some instructions, permuting the sequence of accesses to
lookup tables, or inserting random delays built out of dummy operations [16, 24, 26].
The effectiveness of the hiding countermeasures relies on the fact that the statistical test
employed to determine the correct key guess is computed considering the side-channel
measurements timewise. As a consequence, randomizing the point in time where a
given instruction is computed causes samples from the side-channel measurement of
an operation different from the targeted one to be misinterpreted as useful ones, ef-
fectively adding noise to the accuracy of the statistical test employed. The security
margin provided by hiding countermeasures is typically quantified in terms of the in-
crease in the amount of side-channel measurements caused by the added noise: such an
increase is shown to be scaling as the square root of the number of unrelated operations
performed in the same time instant as the one under attack.

Masking This countermeasure invalidates the correlation between the values em-
ployed to predict the power consumption and the actual values processed by the de-
vice [20, 24]. The principle is to add one or more random values (a.k.a., masks) to
every sensitive intermediate variable occurring during the computation. Sensitive vari-
ables are the ones storing a value influenced by a portion of the cipher key (directly
or indirectly). In a masked implementation, each sensitive intermediate value is repre-

4

Share-split
block cipher
computation

Share
Recombination

Share splitting

Plaintext

Ciphertext

Key

Share splitting

(a) Masking countermeasure

Modified Control
Flow Binary

Equivalent
Code

Fragments

Non Sensitive
Instructions

Non Sensitive
Instructions

Plaintext

Ciphertext

Key

(b) Morphing countermeasure

 Cipher
computation

Ciphertext

Key Cipher
computation

Plaintext

Fake Key

(c) Chaff countermeasure

Figure 1: High level overview of the functioning of the three side-channel attack coun-
termeasure strategies.

sented as split in a number of shares (containing both the randomized sensitive value
and the masks employed), which are then separately processed. For example, the orig-
inal sensitive value is xor-ed with s−1 random numbers. In this way the original value
is put into a one-to-one correspondence with the set of s values (i.e., shares) needed to
reconstruct it. The target algorithm is modified to perform the entire computation on
the set of share-split values recombining them only at the end of the computation, as
depicted in Figure 1a. This technique effectively hinders the attacker from formulating
a correct power consumption model. Indeed, the instantaneous power consumption is
independent from the original (non-masked) value, as unpredictable random values are
newly generated at each execution of the algorithm. Typically, masking techniques are
categorized by the number of masks, d, employed for each sensitive value, which is
known as the order of the masking. A d-th-order masking can always be theoretically
broken by a (d+1)-th-order attack. Such an attack exploits the combination of d+1
measurements of the computations of different shares during the same cipher execu-
tion, to build a mask-independent power consumption model [24]. This in turn pro-
vides a tight upper bound to the capabilities of an attacker able to breach any d-th order
masking scheme. In principle, the lower bound on the number of measurements needed
to breach a generic masking scheme amounts to a single measurement, depending on
the specific operation to be protected and the specific structure of protection scheme.
Besides the theoretical upper limit imposed by the number of shares (i.e., d+1), open
literature also provides instances of masking schemes where a lower bound tighter than
1 on the number of measurements is proven formally.

Provably Secure Countermeasures The first masking scheme providing a formally
proven lower bound on the attacker effort was described by Ishai et al. [20], and is
commonly referred to as ISW masking from the initials of the authors. A d-th order
SCA resistant algorithm employing the ISW masking scheme provably requires the
attacker to be able to perform a d+1 measurements in order to breach the protection.

5

Table 1: Complexity of bitwise masked operations as a function of the masking order
d and lookup table size l

Op.s Complexity Ref.

xor 3(d+1) xor [20]

not 1 not [20]

and 3d(d+1) xor +2d2+3d+1 and [20]

or
3d(d+1) xor +

a ∨ b=¬((¬a) ∧ (¬b))
+2d2+3d+1 and +3 not

table ld(3d + 1) + 2d xor +ld(d + 1) store + [15]lookup +ld(d + 1) load

At the beginning of the sensitive computation, the ISW masking scheme performs the
splitting of the input values into s shares each. In particular, each input value is added,
via xor, to s−1 random values to obtain the first share, while the random values them-
selves are considered as the remaining ones. To recombine all the shares of the result
at the end of the computation, the ISW masking scheme simply adds all s of them to-
gether via xor. In order to perform the computation over share-split inputs the ISW
masking provides a constructive method to transform the unprotected algorithm into
a protected version, modeling it as a Boolean circuit. The method provides a strategy
to rewrite every single bit Boolean and and not operations so that they are able to
compute a result split in s shares starting from similarly s shared inputs. Although
having a method for obtaining protected and and not operations is already sufficient
in itself to implement any Boolean circuit (and thus obtain a protected form of any al-
gorithm), it is possible to implement the protected xor operation in the ISW masking
framework in a more efficient way than its simple Boolean expansion in a combination
of ands and nots, exploiting the fact that the share-splitting is indeed performed via
exclusive-or addition of random values. The ISW masking scheme provides security
up to a d-th order attack, employing s=2d+1 shares in its first formulation presented
in [20], although the authors note that it is possible to reduce the number of shares
down to s=d+1, while maintaining the same degree of protection. The threat model
assumes an adversary able to acquire at most d simultaneous bit-level values during
per clock cycle of the computation [20]. The scheme is proven to provide the indistin-
guishability of the d values obtained by the attacker from d randomly extracted values,
thus providing perfect security of the computation against probing. Table 1 shows the
computational costs to protect all common Boolean operations with the ISW mask-
ing, employing the modified scheme with s=d+1 shares. Despite the possibility of
rewriting any algorithm as a sequence of Boolean operations on its inputs, it is com-
monplace, for performance reasons, to implement computationally intensive functions
as a lookup table where the inputs are employed to index the entry containing the result
of the evaluation of the function on them. The only provably secure scheme providing
a constructive framework to perform secure table lookups on share split values for any
number of shares s is described in [15]. Such a scheme relies on share-splitting the en-
tire tables computing s of them before each load operation is performed, adding fresh

6

randomness to their encoding. As a consequence, the cost of the protection scheme is
quite significant, as reported in Table 1. In particular, the author of [15] highlights that
such an approach is profitable only in the case where the computation of the tabulated
function requires a high number of nonlinear Boolean operations (i.e., ands and ors).

3 Automated approaches
This section discusses two recent approaches to automated countermeasure applica-
tion at design time, as well as a technique to assess the vulnerability of a software
implementation to SCAs, highlighting their advantages and disadvantages. All these
techniques are implemented by means of specialized compiler passes and can be au-
tomatically deployed with minimal intervention of the software developer, who does
not need any security background. Thus, the possibility of combining them is worth
investigating.

3.1 Automated Vulnerability Analysis
The goal of a SCA vulnerability assessment is to determine the computational difficulty
of inferring the secret value employed as the direct or indirect input of a computation
from the observation of a physical quantity associated with the intermediate value gen-
erated by that computation. The security of a cipher implementation is only as strong
as that of the most vulnerable intermediate value computed by any of its instructions.
Following the approach described in [5], an instruction is deemed to be vulnerable if
it is computationally feasible to compute a model of the physical characteristic of its
behavior (e.g., power consumption or EM-emission) for each possible value of the key
bits, that concur to the computation of the output value of the instruction. Computing
the aforementioned model is the ground on which energy based SCAs are built, as its
predictions are matched against the measured behavior of the considered device.

As discussed in Section 2, this computational difficulty depends directly on the
number of secret key bits involved in the operation that produced the intermediate
value targeted by the attack. Thus, a value computed using only a single bit of the
secret key is easiest to attack, whereas the maximum degree of security is achieved by
using all bits of the secret key to compute a value. It is worth noting that values that
are not computed using any bit of the secret key are irrelevant from the point of view
of SCAs, since they carry no useful information.

In [3], a security-oriented data flow analysis (SDFA) is introduced, allowing a pre-
cise assessment of the vulnerability of each instruction, carried out on the intermediate
language of the LLVM compiler [21]. The SDFA, in essence, performs an analysis of
the propagation of the key material through the sequence of instructions of the cipher
implementation, computing for each bit of an intermediate value the set of cipher key
bits from which its computation depends. It is straightforward to understand that, in
the first operations of a cipher, only a few bits of the key are combined to generate
the intermediate values, but the diffusion properties of the algorithm (usually deemed
desirable in a cipher design) guarantee that after a few rounds, all the key bits will be
used to compute each bit of any intermediate value. Thus, an attacker can only exploit
the first few rounds of the cipher as the target of an SCA, and the SDFA can precisely

7

identify how many rounds can be practically attacked, as well as the computational
effort needed to carry out the attack. Since SCAs can also be carried out considering
the ciphertext and targeting the instructions in the last rounds of the cipher, a backward
version of the SDFA is also introduced to complete the security assessment of the ex-
amined implementation. The overall vulnerability of each instruction of the cipher is,
once more, the minimum of those reported by the two analyses.

The proposed technique is particularly attractive because it is independent of the
source language used to implement the cipher, and is statically computed, without the
need to actually run the cipher. In [2], the SDFA has been applied to a wide range of
standard block cipher implementations, including the Advanced Encryption Standard
(AES), Camellia [11], Triple DES and DES-X, and Serpent [10]. It is worth noting
that the SDFA allows to minimize the set of instructions that must be protected, given
a desired level of protection. In [2], a masking countermeasure is applied selectively
only to the instructions with a vulnerability greater than the desired level of protection,
showing that ciphers that are known to be slower in unprotected implementations can
actually outperform faster ciphers when countermeasures are applied, thanks to their
stronger security guarantees, which reduce the performance overhead of the counter-
measure application.

3.2 Code Morphing Countermeasures
The Code Morphing [4] approach aims at altering the side channel profile of the appli-
cation code, both in terms of power consumption and radiated electromagnetic emis-
sions, thus making the construction of a model of the side channel impossible. Without
such a model, the attacker cannot successfully extract the secret information from the
side channel.

A modified compiler based on the LLVM framework [21] provides the means to au-
tomatically install the necessary countermeasures against passive SCAs. The compiler
front-end recognizes custom attributes [4] or additional language keywords [1,6], used
to mark code blocks that need to be protected and arrays of constants accessed through
key-dependent values. These markers are propagated through the compiler front-end,
and preserved by the compiler optimization passes, so that the protected code regions
are never violated (e.g., by compiler optimizations that reorder code).

After code optimization, the compiler pass identifies the sensitive instructions in
the protected regions, and replaces each of them with a set of semantically equivalent
alternatives. Two methodologies are available to achieve this goal. The first employs
a polymorphic engine embedded in the application code by the compiler. The poly-
morphic engine replaces at runtime the sensitive instruction with a randomly selected
semantically equivalent alternative. The second, on the other end, employs the MEET
pass, where the sensitive instruction is removed from the code, and replaced with a se-
lection construct, driven by a value randomly generated at runtime, which selects one
of the set of equivalent alternatives to the original instruction.

To produce these semantically equivalent alternatives, the MEET pass (or the poly-
morphic engine) reads a configuration file that stores, for each sensitive instruction, a
list of equivalent code fragments, called a code tile [4]. In this configuration file, each
sensitive instruction is represented in a normalized format that abstracts from the actual
registers and constant operands. Figure 2 shows an example of code tile for an eor

8

bic r0,r1,r2

bic r3,r2,r1

orr r0,r0,r3

bic r5,r0,r4

bic r3,r4,r0

orr r5,r5,r3

Figure 2: A semantically
equivalent fragment for eor
r2,r0,r1, both in normal-
ized (top) and denormalized
form (bottom)

and r0,r1,#0⊕const1

and r2,r1,#0⊕¬const1

and r0,r0,r2

and r0,r1,#0⊕const1

and r2,r1,#0⊕const1

orr r0,r0,r2

Figure 3: Two tiles for and
r0,r1,C0

instruction, showing its denormalization to match an original sensitive instruction eor
r2, r0, r1. Figure 3 shows two code tiles for an and instruction, demonstrating
the abstraction of constant values.

Access to lookup tables need separate protection, since equivalent code tiles cannot
prevent side channel leakage from the memory bus. The polymorphic engine protects
lookup table accesses through the application of a random permutation to the allocated
array indexes, hiding the access patterns to the substitution table of a symmetric cipher.
This access pattern hiding technique has been proposed and detailed in [25, 26].

The MEET pass also protects lookup table accesses through a share splitting [24]
technique. The share splitting technique splits each value to be stored in memory in
multiple shares, which are all random numbers except one, which is the bitwise exclu-
sive or of the original value and all other shares. The shares are combined in the CPU
registers, so that the secret value never appears in its unprotected form on the mem-
ory bus. Special care must be taken to periodically change the random values used to
protect the original one, without leaking information during the refresh operation [6].

3.3 Chaff Countermeasures
The chaff countermeasure is a defense strategy against a side-channel attacker who
has complete knowledge of the details of a software implementation of a block cipher
primitive, and is trying to exfiltrate the secret key through exploiting the information
leakage during the decryption of a ciphertext. The attacker is assumed to have no means
to access the output of the decryption but can only observe the actions performed by
the attacked security system. Practical application scenarios include Intellectual Prop-
erty (IP) protection for post-deployment firmware updates and keyless entry systems.
This countermeasure swarms the attacker with fake-but-plausible side-channel leak-
ages among which the real one is blended. This enables the system designer to detect
the attacks as soon as a wrong key is employed to forge system inputs, provided that the

9

[[IMAGE DISCARDED DUE TO ‘/tikz/external/mode=list and
make’]]

Figure 4: Decision tree for selecting the appropriate countermeasure strategy

number of plausible alternative values for the secret key is high enough to have an un-
detected use of a wrong key with negligible probability. This in turn enables a prompt
response to a breach attempt before the attack succeeds, a key feature in domains such
as automotive, sensor networks and industrial control. Since the fake leakage is not
distinguishable from the real one, the security of the proposed defense strategy is not
altered even in case more technically challenging attacks, such as High-Order (HO)
analyses or template analyses, are employed to attempt a breach. This is in contrast
with typical leakage suppression techniques (e.g., masking and hiding), where the de-
fender attempts to hinder the exploitation of the leaked information raising the required
technical effort to lead the attack.

To achieve the chaff property, the device behavior should both report more than one
key-dependent behavior as correctly fitting, and make such fitness happen in the same
time instants. To achieve this, an execution trace randomization technique similar to
Code Morphing is employed so that either the instruction computing the real cipher
result, or one of its chaff is executed randomly at each cipher run. Such a randomized
scheduling causes the fitness for multiple keys to peak apparently simultaneously, since
the side-channel analysis combines a statistically significant amount of measurements
from different runs together to compute the fitness of the hypotheses timewise.

The execution trace randomization will thus select, through a random-number-
generator-driven (RNG-driven) switch-case like construct, one out of many alternate
code fragments, each one of which should contain both the real instruction and the
corresponding chaff ones. Particular care should be taken in the scheduling of the in-
structions of each alternate branch of the switch-case construct. Their schedules should
be chosen in such a fashion that each instruction is executed an equal amount of times
over the same clock cycle, across different runs. A straightforward approach to build-
ing these schedules is to emit (#chaff + 1)! alternate code fragments, each of which
is made of a permutation of the aforementioned instructions. However, the overhead
introduced by such an approach grows very quickly in the number of chaff keys. A
viable efficient alternative is to build #chaff + 1 alternate code fragments obtaining
each one of them as a sequence of 1 instruction rotations, starting from an arbitrary
schedule. The resulting code fragments set fits the chaff property requirements, while
retaining an overhead which grows only linearly with the number of chaff keys.

3.4 Comparative analysis
It is now worth considering the applicability of the three types of countermeasures de-
scribed above (morphing with the polymorphic engine, morphing with the MEET pass,
and chaff) in different use case scenarios, comparing them with a standard masking.
First, let us consider the computational overhead imposed by the three countermea-
sures. All the approaches have been applied to AES128 with tabulated S-boxes. The
relative overheads (slowdown) are compared, since different boards (albeit all featuring

10

ARM-based embedded processors) have been used to obtain the experimental results.
A typical first-order masking, applied to the entire cipher, imposes a major penalty,

in the range of 100× [3]. Employing the SDFA to pinpoint the vulnerable instructions
and protecting only those reduces the overhead to 42× [3].

Code morphing with the polymorphic engine is inefficient if the code is morphed
at every call of the protected primitive – the overhead reported in [4] is 392×, greater
than most masking approaches. The overhead could be reduced employing the SDFA,
but it would still be in the range of 156×. However, it is possible to trade off some
security for performance by performing the morphing action only once every n calls,
where n can be chosen based on the impact on the overlap of the confidence intervals
with which the true and the best false guess are estimated. In [4], it is shown that the
value of n can range between 100 and 3000 without significantly affecting the security
(the confidence intervals overlap by more than 79%, and the best false key is always
identified with a better confidence than the true key), with an overhead reduced to 4×
and 0.2× respectively, even without applying the SDFA. The MEET pass, on the other
hand, imposes an overhead of 4.82× to 4.33×, depending on the specific architecture,
which can be lowered to 2.14×-2.42×, by employing the SDFA to identify the vul-
nerable instructions and applying the MEET pass only to the AES rounds that include
them. The overhead of the chaff countermeasure depends on the number of fake keys
desired, which in turn impact the probability the attacker has of guessing the correct
key. A single chaff imposes an overhead of 1.37×, whereas with three chaffs the over-
head increases to 2.28×. Comparing the above results, the polymorphic engine still
provides the fastest countermeasure by one order of magnitude. However, it does have
some limitations in its applicability, due to the fact that the polymorphic engine needs
the ability to write portions of memory that are labeled as containing executable code.
This is not feasible in many microcontrollers. In those cases, the MEET approach
provides a suitable alternative. The chaff countermeasure, on the other hand, covers
a different use case scenario, where reactive countermeasures are needed in order to
detect the attack and raising an alarm (or performing other response actions, including
activating self-destruction procedures). The chaff countermeasure is not suitable for
scenarios where there is no reaction expected to an attack, because the attacker would
then be able to brute force the correct key by trying and verifying all the possible com-
binations of the false and true key bytes identified through the attack. Finally, the chaff
countermeasure cannot be usefully combined with either code morphing approach, but
could be combined with standard masking, although the performance impact (in the
range of 200×) would make it acceptable only in slow-response systems. Figure 4
summarizes in a flowchart how a system designer would select the appropriate tool for
applying SCA countermeasures to a cipher implementation.

4 Concluding Remarks
This paper provided an overview of techniques for protecting software implementations
against SCA that can be applied through the use of a specialized compiler, thus making
them amenable to automated application in toolchains for the development of secure-
by-design systems. These techniques provide protection to the target implementation
from different angles, suitable for application in different use case scenarios.

11

References
[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The MEET Approach:

Securing Cryptographic Embedded Software Against Side Channel Attacks.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 34(8):1320–1333, Aug 2015.

[2] Giovanni Agosta, Alessandro Barenghi, M. Maggi, and Gerardo Pelosi. Design
Space Extension for Secure Implementation of Block Ciphers. IET Computers &
Digital Techniques, 8(6):256–263, 2014.

[3] Giovanni Agosta, Alessandro Barenghi, Massimo Maggi, and Gerardo Pelosi.
Compiler-based side channel vulnerability analysis and optimized countermea-
sures application. In The 50th Annual Design Automation Conference 2013, DAC
’13, Austin, TX, USA, May 29 - June 07, 2013, pages 81:1–81:6. ACM, 2013.

[4] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing
methodology to automate power analysis countermeasures. In Patrick Groen-
eveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual Design Au-
tomation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012,
pages 77–82. ACM, 2012.

[5] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
Enhancing Passive Side-Channel Attack Resilience through Schedulability Anal-
ysis of Data-Dependency Graphs. In Network and System Security - 7th Interna-
tional Conference, NSS 2013, Madrid, Spain, June 3-4, 2013. Proceedings, pages
692–698. 2013.

[6] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale. A
multiple equivalent execution trace approach to secure cryptographic embedded
software. In The 51st Annual Design Automation Conference 2014, DAC ’14, San
Francisco, CA, USA, June 1-5, 2014, pages 210:1–210:6. ACM, 2014.

[7] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
Information Leakage chaff: Feeding Red Herrings to Side Channel Attackers. In
Proceedings of the 52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015, pages 33:1–33:6. ACM, 2015.

[8] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
The MEET approach: Securing cryptographic embedded software against side
channel attacks. IEEE Trans. on CAD of Integrated Circuits and Systems,
34(8):1320–1333, 2015.

[9] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale.
Trace-based schedulability analysis to enhance passive side-channel attack re-
silience of embedded software. Information Processing Letters, 115(2):292–297,
2015.

[10] Ross J. Anderson, Eli Biham, and Lars R. Knudsen. The Case for Serpent. In
AES Candidate Conference, pages 349–354, 2000.

12

[11] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mo-
riai, Junko Nakajima, and Toshio Tokita. Specification of Camellia-A 128-Bit
Block Cipher, September 2001.

[12] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
DPA, Bitslicing and Masking at 1 GHz. In Cryptographic Hardware and Embed-
ded Systems - CHES 2015 - 17th Int.’l Workshop, Saint-Malo, France, September
13-16, 2015, Proceedings, pages 599–619, 2015.

[13] Alessandro Barenghi, Gerardo Pelosi, and Yannick Teglia. Information Leak-
age Discovery Techniques to Enhance Secure Chip Design. In Claudio Agostino
Ardagna and Jianying Zhou, editors, Information Security Theory and Practice.
Security and Privacy of Mobile Devices in Wireless Communication - 5th IFIP
WG 11.2 Int.’l Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011.
Proceedings, volume 6633 of LNCS, pages 128–143. Springer, 2011.

[14] Christian Boit, Clemens Helfmeier, and Uwe Kerst. Security Risks Posed by
Modern IC Debug & Diagnosis Tools. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages
3–11, 2013.

[15] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, pages 441–458, 2014.

[16] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and Improvement of the Ran-
dom Delay Countermeasure of CHES 2009. In Cryptographic Hardware and
Embedded Systems, pages 95–109, 2010.

[17] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal Verification of Soft-
ware Countermeasures against Side-Channel Attacks. ACM Trans. Softw. Eng.
Methodol., 24(2):11:1–11:24, 2014.

[18] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers Schreur.
Wirelessly Pickpocketing a Mifare Classic Card. In 30th IEEE Symposium on
Security and Privacy (S&P 2009), 17-20 May 2009, Oakland, California, USA,
pages 3–15, 2009.

[19] Xu Guo, Junfeng Fan, Patrick Schaumont, and Ingrid Verbauwhede. Pro-
grammable and Parallel ECC Coprocessor Architecture: Tradeoffs between Area,
Speed and Security. In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, pages 289–303, 2009.

[20] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hard-
ware against Probing Attacks. In Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, pages 463–481, 2003.

13

[21] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proc. of the Int’l Symposium on Code
generation and optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004.
IEEE Computer Society.

[22] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the
Vulnerability of FPGA Bitstream Encryption against Power Analysis Attacks:
Extracting Keys from Xilinx Virtex-II FPGAs. In ACM Conference on Computer
and Communications Security, pages 111–124, 2011.

[23] Sri Hari Krishna Narayanan, Mahmut T. Kandemir, and Richard R. Brooks. Per-
formance Aware Secure Code Partitioning. In Design, Automation and Test in
Europe Conference and Exposition, DATE 2007, Nice, France, April 16-20, 2007,
pages 1122–1127, 2007.

[24] Eric Peeters. Advanced DPA Theory and Practice - Towards the Security Limits
of Secure Embedded Circuits. Springer New York, 2013.

[25] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking
and Shuffling for Software Implementations of Block Ciphers. In Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 171–188, 2009.

[26] Stefan Tillich and Christoph Herbst. Attacking State-of-the-Art Software
Countermeasures-A Case Study for AES. In Cryptographic Hardware and Em-
bedded Systems - CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10-13, 2008. Proceedings, pages 228–243, 2008.

[27] Kris Tiri and Ingrid Verbauwhede. A VLSI Design Flow for Secure Side-Channel
Attack Resistant ICs. In Design, Automation and Test in Europe Conference and
Exposition (DATE 2005), 7-11 March 2005, Munich, Germany, pages 58–63,
2005.

14

