Alessandro Barenghi
Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

April 28, 2011




Introduction

Recap

By now , you should be familiar with...

@ The UNIX local socket programming interface

@ Locking and synchronization mechanisms

@ A hint on signal handling under POSIX compliant Unices
@ TCP/IP Socket programming




Introduction

Lesson contents

@ Asynchronous interruption mechanisms

@ Signal issuing and handling
@ Signal masking

o Signal safe multiplexing




Signals

Signals

Overview

@ Signals are practically implemented as software triggered
interrupts

@ We have already seen the system utility employed to raise
signals (kill)

o We will now understand how to manage signals from within a
program

@ We will also deal on how the delivery of signals in order to
obtain interrupt free sections




Signals

Interrupts

Software what?

@ Interrupts are events altering the regular execution of a
program by a processor

@ Can be caused by :

lllegal operations (e.g. divide by zero)

o Invalid opcodes in the binary

o Page faults

o Software triggers (debuggers)

@ The interruption of the program is instantaneous, thus
context saving issues occur




Signals

Interrupts

Interrupt table

@ Interrupt occours — interrupt handler is called and :

o Immediately executed in case of hardware interrupts or...
o Scheduled for execution immediate execution when the process
resumes

@ Pointer to interrupt handlers are stored in an interrupt table

@ x86(_64) has 256 of them, the first one is reserved for
hardware interrupts

@ Linux employs the 128th to store the signal handlers for the
process (int 0x80)




Signals

Interrupts

Interrupt Handling

@ In order to handle an interrupt, the control unit of the CPU :

o Finds the correct interrupt vector and determines which entry
has been triggered

o Checks if the interrupts handler requires a change in the
privilege level

o Saves the process context (registers content and program
status word)

o Loads the interrupt handler entry point and sets correctly
segment selector and offsets

o The handler is finally run :)

@ Interrupts can be blocked through setting a proper flag in the
control unit, creating interruption safe regions




Signals

Signals

Signal Handling

@ Signal handling mimicks interrupt handling :

o Every process has an associated region of the process
descriptor to track the signals sent to him

o Upon sending a signal, the kernel updates the process
descriptor of the destination process

o The signal is received as soon as the process is selected for
execution

o Before the process is run, the kernel checks if there are any
pending signal to be run

o If the signals are not blocked, the process execution resumes
from the handler instead of the previous state

o This is repeated until all the pending signals have been dealt
with




Signals

Signals

@ Signal handlers are userspace code, interrupts are not

@ Signal handlers may invoke system calls

o Signal handlers are not dealt with in the same instant a signal
is risen

@ Multiple signals of the same type may be issued before the
first is dealt with

@ The behaviour for multiple issues of the same signal to the
same process is not defined

@ Since signal handling in Linux employs the realtime signal
architecture, only one signal is received )




Signals

Signals

Signal Handling

The actions to be performed upon receiving a signal are specified
in a sigaction structure :

struct sigaction {
void (*sa_handler) (int);
void (*sa_sigaction) (int, siginfo_t *,void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer) (void);

};




Signals

Signals

Signal Handling

The signal handler function void (sa_handler) (int)
@ Receives as the only parameter, the number of the signal

@ Does not return anything (as there is no one to return the
value to)

@ Can be interrupted as its running time is considered user code

@ Should be kept as small as possible to minimize interruptions

.




Signals

Signals

Handler installation

A signal handler is installed via the sigaction primitive taking as
parameters :

The signal number signum

@ A sigaction struct act containing the new handler

@ A sigaction struct oldact where the old handler is saved
@ The SIG_DFL macro specifies the default signal handler
°

The signal handler is installed until a new one is set




Signals

Signals

Signal Masking

@ It is possible to block some signals from being delivered

@ A blocked signal will be delivered as soon as the block is
removed?

@ The set of signal to be temporarily blocked can be specified in
a sigset_t structure

@ The sigemptyset function initializes an empty signal set,
while the sigfillset initializes a full signal set

@ The signaladdset and signaldelset respectively add and
remove a signal from the set

“this is different from the interrupt behaviour, which, if blocked, will be
ignored




Signals

Signals

Signal Masking

@ Once a signal set has been built , it can be used either as a
block or unblock mask

@ The sigprocmask primitive adds/removes to/from the
blocked signal set of the process

@ The action is specified via the first parameter which can be
either SIG_BLOCK, SIG_.UNBLOCK or SIG.SET

@ The function saves the previous signal block mask for
convenience in restoring




Signals

Signals

Signal Masking

@ Once a signal set has been built , it can be used either as a
block or unblock mask

@ The sigprocmask primitive adds/removes to/from the
blocked signal set of the process

@ The action is specified via the first parameter which can be
either SIG_BLOCK, SIG_.UNBLOCK or SIG.SET

@ The function saves the previous signal block mask for
convenience in restoring




Signals

Signals

Peculiarities

@ Two signals cannot be blocked : KILL and STOP

@ Every child inherits a copy of its parent signal mask upon the
call of the fork primitive
@ The signal mask is also preserved across the execve primitive

o If a signal is raised as a consequence of a hardware interrupt
(e.g. SIGSEGV or SIGFPE ) the kernel will take drastic actions
even if the signal is masked

v




Safe Multiplexing

Uninterruptible multiplexing

the pselect primitive

@ A critical point where signal masking may be desired is when
a select function call is being run

@ Masking and unmasking by hand the call via sigprocmask
calls may not be as safe as desired

@ To this end , the POSIX standard specifies the pselect
primitive

@ The primitive acts atomically as a select call encapsulated in
two sigprocmask leaving the mask state in the same state it
was before the call




Safe Multiplexing

Continuous running

Daemons

@ Running a process in background is commonly called
transforming it into a daemon

@ A daemon is a process which runs for an undefinite amount of
time (usually, until killed or the machine bursts in flames)

o By default, the daemon only communicates via logfiles as no
terminal is expected to be running it

@ Usually, the working directory of a daemon is the root
directory (i.e. /)

@ For the sake of clarity, the daemon processes have a filename
ending in d (e.g. /usr/sbin/sshd)




Safe Multiplexing

Continuous running

the daemon primitive

@ A convenient method to transform a process into a daemon is
the daemon primitive

@ This function accepts two integer parameters and performs
the following actions :

o Forks the running process

o Makes the parent program call an _exit (), thus reparenting
the program to init

o If the nochdir parameter is zero, changes the working
directory to /

o If the noclose parameter is zero, closes standard input,
output and error descriptors




Safe Multiplexing

Continuous running

Logging
@ Since the daemons run in background and have no associated

terminal, some way for them to communicate errors should be
devised

@ The most common way is to employ a log file

@ In order to ease the output on the log file, usually it replaces
either standard output or standard error (or both)

@ This can be accomplished via the dup2 primitive

@ int dup2(int oldfd, int newfd) duplicates 01dfd into
newfd: passing either 1 or 2 as newfd effectively replaces
stdout and stderr




	Introduction
	Signals
	Safe Multiplexing

