Chapter 1

UML TAILORING FOR SYSTEMC AND ISA
MODELLING

Giovanni Agosta!, Francesco Bruschi!, Donatella Sciuto *
L politecnico di Milano

1. Introduction

Object oriented formalisms, after having been widely accepted in the
software world, are making their way into the specification and design of
complex hardware/software systems. The constantly growing complex-
ity of these devices, in fact, adds new requirements to the modeling tools
involved in the design flow. The Unified Modeling Language (UML) is a
visual formalism for the design of object oriented systems, that is gaining
consensus due to its standardization and expressive versatility.

In this chapter, we explore the possibility of exploiting UML in the
design flow of hardware and hardware/software digital devices. Aim of
the work is twofold:

1 to analyze the roles that UML can play with respect to other sys-
tem formalisms;

2 to explore the possibility of effectively exploiting UML in the roles
identified in the previous analysis.

To better understand and frame the benefits UML can provide to
a SoC design flow, we rely on two evaluation metrics, abstraction and
application specificity. These two concepts, even if not completely unre-
lated and orthogonal, allow to clearly identify and highlight the pecu-
liarities of a flexible high-level language such as UML in the context of a
hardware/software design flow. Moreover, the two different approaches
presented for the exploitation of UML in a SoC design scenario will be
characterized in terms of the two attributes introduced, to clearly un-
derstand their contribution to each one of them.

2

2. Abstraction and Application Specificity

A typical modern design flow can be seen as a series of steps, applied
in a defined sequence, that aim at the implementation of a specific func-
tionality. What typically happens is that some desired behavior must,
at the end of all the design phases, be described in terms of elemen-
tary manufacturing actions dependent of the implementation technol-
ogy chosen. The intermediate steps through which the designers can
be required to go can be extremely heterogeneous under many different
points of view. Nevertheless, it can be worth seeking for some core con-
cepts whose meaning remains defined throughout all the different stages,
and that could help in defining some basic invariant properties of the
design flow.

An alternative way of describing a design flow is to depict it as the
production of a series of descriptions of the system, incrementally richer
of information related to the implementation. Ideally, the design would
start from the pure statement of the functionality of the system to be re-
alized, without any information on how this will be implemented. Then,
as far as implementation choices are performed, new descriptions are pro-
duced that contain details that reflect such choices. Even if apparently
straightforward, it is worth noting that an implicit constraint strictly
imposed on the subsequent descriptions is that the functionality of each
of those must remain the same.

This simple analysis implies a set of assumptions that are usually
implicit, and that are worth being highlighted:

m the outcome of each design flow stage is some description of the
system;

m descriptions of the same system at different stages differ in that
they reflect a different amount of implementation details;

= all the descriptions of the same system are assumed to describe the
same functionality.

These assumptions can be further explicited as follows:

m it is assumed that it is possible to associate a functionality with
every description. Note that this association may not be easy to
determine;

m it is assumed that functionalities of descriptions at different stages
can be compared for equivalence. This is a very strong assertion,
since defining an equivalence between heterogeneous models can
be extremely difficult, but nevertheless it cannot be disregarded,

UML tailoring for SystemC and ISA modelling 3

since giving it up would conceptually prevent from the possibility
of checking for design correctness.

Note that two classes of concepts, are present at every stage of a
generic design flow: descriptions and functionalities. Examples of what
is meant by description are:

m A textual description of the expected behavior of a system;

m A C function that maps an array of floating point numbers onto
another;

m A netlist of elementary elements such as logic gates and flip—flops.
Examples of functionalities, on the other hand, are:
m 3 representation of the input/output relation of a low pass filter;

m the behavior of some observable feature of a system as a response
to some input.

In the context of a design flow, what is usually meant by the term
model is a description from which a certain functional interpretation is
derived. Note that the nature of the functionalities considered mainly
depends on the type of system or sub-system under analysis.

These considerations can be formalized as a mathematical relation
between descriptions and functionalities.

A model is a couple < d, fi >, where:

m dis a description, d € D, and D is the set of all possible descrip-
tions;

m fi: D — F is the functional interpretation, and F' is called the
functionality space. fi is injective (a description can have only one
functionality, given a functional interpretation).

» fi(d) is the functionality of D.

Since different functionalities can be equivalent with respect to some
equivalence relation e € F?, for simplicity we will consider, as a function-
ality space, the space of all the equivalence classes induced by e. Since
fi is injective, an equivalence relationship ep € D? is induced on D:
(d1,d2) € ep & f(d1) = f(d2). Among all the possible descriptions that
form the domain of a given functionality space, several clusterizations
can be made. In particular, it is possible to group all the descriptions
produced with a given formalism L (a software example could be: all
the C programs, all the assembly descriptions, all the models of a pro-
cessor given its memory content and state registers). The point is that

4

some interesting properties of the different formalisms can be stated in
terms of properties of the descriptions subspaces and on the functional
interpretation fi.

Let us define another function of a description d € D:

I:D—>R"

that represents the information content of the description d. The ex-
pression information content must be intended according to Shannon
definition.

One of the most important features that a formalism for the system
level design must have is the ability to express specifications that can
be easily interpreted and analyzed by various different designers and
analysts, in the early phases of a project. This is a key point in en-
abling important possibilities such as model exchange, correctness veri-
fication, and most of all communication between system level engineers
and designers. The ease of interpretation of a description can be put
into correspondence with the ability to evaluate its functionality by a
human user. Greatly simplifying the complex compound of perceptive
and psychological phenomena that lie behind the ability to interpret a
description extracting from it certain functional features, it is reason-
able to state that the smaller is the description information content,
the easier it will be to interpret it. It is then possible to compare the
understandability of two descriptions d; and do that belong to different
formalisms L and Lo, that have the same functional interpretation, by
comparing their information contents: d; is more easily understandable
than dy, given that they have the same functionality fi(dy) = fi(da),
if I(d1) < I(dy). If this property is reflected by a consistent number
of functionalities interesting for a given design domain, then, in that
domain, L1 is more easily understandable than Ls.

Another interesting feature of a formalism is its ability to easily rep-
resent functionalities. The specifications representation problem can be
stated as follows. Given a functionality f € F, where F is a given
functional domain, and a formalism L, what is the effort in finding a de-
scription d € L such that fi(d) = f? Again, it is possible to conceptually
formalize this problem by assuming that if in L; there is a description
di with a smaller information content than a description do € Lo, then
it will be easier for a designer to find d; than ds, or, in other words,
to model f in L1 than in Ls. A way to reinforce this assumption is to
remember that the information content of a description is, according to
Shannon interpretation, the number of modeling choices that must be
performed to obtain it. If

I(dl) > I(dg),dl € Li,dy € Lg,f’l(dl) = f‘l(dg)

UML tailoring for SystemC and ISA modelling 5

for a consistent number of functionalities of interest F', then L; is said
to be more expressive with respect to Ly. Note that both expressiveness
and understandability depend on the set of functionalities F' considered.

Among all others, two features directly influencing ezpressiveness and
understandability of a given formalism can be defined: its abstraction
and its application specificity.

Abstraction is related to the amount of details that must be provided,
in a given formalism, to describe a given functionality. A way for defining
abstraction differentially among different formalisms is the following:
given a functionality f € F', if there are more descriptions dy; € L; than
dyj € Ly such that i(dy;) = i(dy;) = f, then Ly is more abstract of L,
with respect to f. This definition is directly based on the etymological
meaning of abstraction in that it expresses the possibility, for a more
abstract language, to describe a property common to several different
descriptions in a less abstract language (in this case, the property is the
functionality).

Application specificity is the possibility, for a given formalism, to ef-
fectively describe functionalities that belong to a specific application
domain. This happens when a certain amount of information on the
specific domain is embedded in the language definition. Descriptions d
in a formalism that is application specific with respect to a subset F, C F'
will have a lower information content with respect to descriptions in a
non application specific formalism.

Both abstraction and application specificity are features that increase
the expressive efficiency of a given formalism, that is they allow the
description of functionalities of interest with less information. Never-
theless, a high application specificity narrows the expressive domain of
the formalism. Thus, while abstraction has no drawbacks when present
in formalisms adopted in the early phases of system level design, the ap-
plication specificity can keep a formalism from being adopted in a wide
range of applications.

The interesting point is that UML, while being abstract, can allow
different levels of application specificity. In particular, its profiling fea-
tures allow a specialization of the syntactical and semantical elements,
importing concepts that are typical of a given set of applications.

In Section 1.3 an approach to the use of UML with a high degree of
abstraction and low application specificity is shown. The specialization
features of UML are employed to define a set of concepts present in the
Transaction—Level communication modeling style. Transaction-Level
Modeling allows the description of communication between modules of
a system disregarding information that is implementation related, such
as the protocol and the semantics of the communication mean. The

6

semantics is similar to that of the remote procedure call (RPC). The
information content I(d) of a Transaction—Level description d is typi-
cally much lower than that of a description of a system with the same
communication functionality written, for instance, in VHDL, where ex-
plicit synchronization and acknowledge information must be specified.
On the other hand, there is no specific application domain concept in
Transaction-Level Modeling, that can be applied to describe a wide
range of systems. Native unconstrained UML model elements are more
abstract than the core concepts of Transaction-Level Modeling. Sec-
tion 1.3 shows how to constrain UML elements in order to “mimic” the
concepts typical of an abstract textual formalism for the specification of
communication between functional elements. The result is the formalism
Lrpm-

On the other hand, in Section 1.4 the problem of modeling a narrow
set of systems is analyzed, to verify the possibility of effectively using
UML while varying application specificity. The set Frg4 C F consid-
ered is that of the instruction level programmable systems. A set of
concepts functional to the description of these components is defined by
specializing core UML elements, and these are applied to the descrip-
tion of existing instruction set architectures. The set of these concepts,
together with the syntactical rules for their composition defines the for-
malism Ljg4. It is interesting to compare the expressive effectiveness
of the two profiles: the information content of a description d whose
functionality lies in Frs4 would be much higher if d € Ly than if
d € Lrss. On the other hand, there is a wide range of functionalities f
for which a description d does not exist in Ljg 4.

The comparison of pros and cons of both approaches will allow an
evaluation of the effectiveness of UML when used considering different
levels of application specificity.

3. UML Transaction—Level Modeling

In this section we present a profile that defines within UML a set
of elements typical of Transaction—Level Modeling. Through the UML
specialization mechanisms we formalize the concepts of module, chan-
nel, and event-based synchronization. In addition to the possibility of
modeling the communication structure of a system, we consider the pos-
sibility of modeling behavioral aspects by means of state diagrams as
part of the UML formalism. This is a substantial extension of the work
in BBANS03.

Having defined these elements that allow the composition of an ex-
ecutable model of the system to be designed, we face the problem of

UML tailoring for SystemC and ISA modelling 7

automatically generating code from the model. The problem is tackled
at both the conceptual (mapping from the UML model semantics to de-
sign language semantics) and technological level (choice of portable and
standard technologies).

The design language chosen as target for the translation is SystemC
0OSCO01, and the translation flow is fully based on standard technologies
such as XMIOMGO00, XSLTW3C99, DOMDOM, SAXSAX.

This section shows how UML can be employed at a high abstraction
level, low specificity level design formalism by means of a case study
where, starting from a graphical model, a SystemC description is gener-
ated.

An interesting question is whether the modeling capabilities of UML
can be applied to embedded system design, and integrated in a flow
that comprises SystemC 2.0 (OSCO01) as the modeling language. In
particular, such a flow should allow the use of the high-level modeling
features of UML in the early phases of the design, and then it should
be able to map this information onto a SystemC model. This approach
can provide several advantages. Most of them are well proven in the
software design field:

m Using a visual design approach lets the designer focus on the es-
sential architectural and functional features of the system in the
early phases of the project, without being bothered with the many
details (syntactical, for instance) of a textual design language, that
is to say that the abstraction is higher;

®» Visual models are a documentation mean of proven effectiveness;
the project documentation task can thus be fairly simplified by the
adoption of a visual modeling approach;

m A point of great importance is the possibility, given by a modeling
language such as UML, to locate architectural patterns and express
them for further reuse. The pattern idea extends the reusability
concept from the object to the architecture domain, and is be-
coming widely used in the design of complex software systems. A
great advantage coming from the integration of UML in the design
of hw/sw systems would be to explore if such concepts are mean-
ingful in the embedded systems design context; this would be of
great interest for the management of the ever growing complexity
of the design of this kind of systems.

We divide the problem of representing a system design in UML in
its structural and behavioral components. In Section 1.3.1 we define a
profile for the structural description of Transaction—Level models, while

8

in Section 1.3.2 we augment the system description with behavioral ele-
ments that describe the functionality of each component of the system.

The expression Transaction—Level Modeling (TLM) refers to an ab-
straction level in the description of a system that provides modeling
of the communication between the elements that describe the behavior
of the system in a functionally, but not pin-accurate way. That is, in a
TLM model the focus is on the data that is passed between two modules,
rather than on the way the transfer is accomplished.

For instance, it is possible to specify the functional characteristics
of the communication, such as the blocking or non blocking semantics,
without defining their implementation. To do so, the designer does not
need to use the hardware signal semantics, as it happens in languages
such as SystemC 1.0 and VHDL.

One of the many advantages of the introduction of such a modeling
style in a specification language is the possibility of obtaining an exe-
cutable model at a higher level of abstraction, not biased by architectural
choices. Most of the implementation choices will be performed after this
early modeling phase. Thus, a TLM model of a system can describe an
abstract system that can be mapped onto different architectures.

Transaction-Level Modeling was first introduced in hardware spec-
ification languages in SpecC (ZGD97), and later developed under the
name of behavioral wrappers in (YNL101) and as Functional Interface
by the VSIA (LSdJ*00).

3.1 Structural Features of Transaction—Level
Models

The first step in defining a UML profile and toolchain to describe
HW/SW systems is to define their structural components. We first de-
fine a UML profile, then we describe the code generation flow.

3.1.1 Profile Definition. The profile has been defined to
satisfy the characteristics previously required, by exploiting the stereo-
type extension mechanism of UML. A stereotype is used to tailor UML
constructs on the needs of specific application domains.

In Figure 1.1 the elements of the profile and the relations among them
are shown as a UML class diagram.

The stereotypes defined correspond to the conceptual entities used to
capture the communication features offered by SystemC:

m The <<module>> stereotype is intended, in the profile, as the basic
encapsulation element; it essentially acts as a container of processes
and of other modules. Moreover, the possible communication links

UML tailoring for SystemC and ISA modelling 9

<<moduleLink>> <<processLink>>
communLﬂmuith
communicates with
0..% 0..%
<<module>> <<process>>
0.* 0.*
. sender . +sender
“+recelver + —“+recelver
<<message>> <<message>>

Figure 1.1. Relations among profile elements

among modules are different from those among processes. In this
way, the encapsulation features typical of the SystemC 2.0 mod-
ules are preserved; the modules can act as sender and receiver of
messages, and can communicate with other modules by means of
<<moduleLink>> associations.

m The <<process>> stereotype represents the behavioral elements of
modules. Two processes can communicate directly only if they be-
long to the same module; communication between two processes
of different modules is achieved by means of intermodule com-
munication links. The processes can act as sender and receiver
of messages, which in turn are realized by <<processLink>> as-
sociations. The <<process>> stereotype is the top of a hierar-
chy that comprises elements corresponding to the SC_.METHOD,
SC_.THREAD, SC_.CTHREAD SystemC process types.

10

m The <<message>> stereotype is used to represent information ex-
change between different modules and processes. These are the
direct links to the collaboration diagrams obtained from the UML
design phases: for every message between two entities in the col-
laboration or sequence diagrams, there has to be a corresponding
<<message>> in the class diagram. Messages must be associated
with <<moduleLink>> or <<processLink>> classes, according to
the nature of their senders and receivers (either modules or pro-
cesses). This association is the link between the UML collaboration
diagrams and their SystemC realization.

m <<moduleLink>> stereotype represents the “links” that implement
the exchange of a set of messages between two modules. In Sys-
temC this concept corresponds to that of channel. In SystemC
the channel entity is specialized into less general, lower level spe-
cializations: the <<moduleLink>> has the same characteristic. This
isomorphism is meant to give control over the code generation
phase: the designer can decide to use a signal to realize a set of
messages instead of a more general channel; this information will
be reflected in the generated code.

m <<processLink>> is analogous to <<moduleLink>>: it represents
a communication link between processes belonging to the same
module; the main difference is the spectrum of possible implemen-
tations of a link: two processes inside a module can communicate
with signal sharing, channels, or events that realize simple ren-
dezvous; these possibilities are again represented hierarchically.

3.1.2 Profile Extendibility. The structural part of the pro-
file is designed to allow further extensions. In particular, we use this
extensibility features to express the behavioral features of the modeled
system. A natural way of extending the profile elements is shown in
Figure 1.2.

Here the <<process>> class is associated with a <<behavior>> class,
which in turn can express some behavioral properties of the process (for
instance, it could be associated with a State Machine diagram).

The link stereotyped classes (<<processLink>> and <<moduleLink>>
classes) are susceptible of a similar extendibility: there could be, for
instance, a set of communication protocols that can be attached to a
channel and then synthesized in the code generation phase. The profile
elements and associations are defined in order to allow such extensions.

UML tailoring for SystemC and ISA modelling 11

<<behavior>> <<process>>

1
4 behavior 0.*

communicates with | 0..*

Figure 1.2. Process behavioral extension

3.1.3 Code Generation Flow. The proposed design process
comprises a UML design phase, a refinement phase that extracts from
the UML model the information needed for code generation using the
concepts defined in the profile, and two automatic translation phases,
that operate a series of transformations to obtain the final code. The
implementation of the flow implies the use of different emerging tech-
nologies in the field of data exchange:

UML model (collaboration, sequence, class) — UML profiled
class diagram. This is the translation phase in which the designer,
after having outlined a suitable set of communication scenarios, distills
the information needed and expresses it in terms of the concepts defined
by the profile. The steps needed to perform the translation are:

= identify the module-process architecture (i.e., assign every process
to a module);

m for each link between two processes in a collaboration diagram:

1 define a set of <<processLink>> association classes if the pro-
cesses belong to the same modules, a set of <<moduleLink>>
between the containing modules otherwise;

2 assign each <<message>> that connects two processes to a
link;

m repeat for each module.

UML profiled class diagram — XMI model description. This
step is performed by the UML modeling tool; XMI (see OMGO00) is a
XML format that is standardized by OMG (see OMGO04); it allows the
exchange of design models. XMI provides data exchange not only among

12

UML modeling tools: it has the capability to represent every design
model whose metamodel is described in terms of the OMG Meta Object
Facility (MOF) (see OMGO04). Most of the UML tools now available
include an XMI generation module, that allows the export of the model
in compliance with this XML format;

XMI model description - XML intermediate format. The
XMI representation of a UML model is very rich of details that relate to
things such as the graphical representation of the elements, the references
among objects in different diagrams, and so on. Moreover, the data
are generated according to the MOF metamodel structure of the UML
language: this means that the information associated with the profile
elements is not easily accessible. Therefore, this format is not an ideal
starting point for the code generation; so, a choice was made to perform
a first transformation on the XMI representation, to extract from it
only the relevant details needed by the next phases. Another significant
choice was to obtain, from this transformation, another XML compliant
document. This in fact allows an easy data parsing by the subsequent
algorithms and a much easier data exchange with third parties tools. The
technology chosen to perform this step is the W3C XLST (see W3C99).
XSLT is a set of recommendations for a scripting language that is able to
transform a XML document into another XML document by means of
a sequence of transformations. The XLST scripts are XML documents
themselves. This translation phase is then accomplished by means of an
XLST script, whose main tasks are:

m to extract the model information needed to build the intermediate
format;

m to format the information retrieved in a useful fashion.

To achieve the first goal, the algorithm has to retrieve all the instances
of the stereotyped classes, the associations between them, and to out-
put all the related information, formatted as an XML document. This
intermediate format contains a list of modules, each one in turn con-
taining a list of processes; for each process there is a set of references to
each process that exchanges messages with it, together with the message
signatures and the links to what they belong.

XMI intermediate model — SystemC skeleton code. This
step can be again performed using XSLT transformations; the interme-
diate description can also be easily parsed using an XML parser and
then elaborated in order to, for instance, compute some metrics from
the static information contained in it.

UML tailoring for SystemC and ISA modelling 13

3.2 Behavioral Description of Transaction—Level
Models with UML State Diagrams

In this section we define a behavioral extension of the structural profile
previously defined, based on the State Machine UML diagrams.

As stated in Section 1.3.1, the description of the structural elements
of a model can be augmented with arbitrary information by means of
the extension syntax proposed. We exploit this possibility to associate
behavioral functionality descriptions to modules. In particular, we chose
the State Machine diagrams defined in UML 2.0 as the computational
model of the modules behavior. This choice is somewhat arbitrary, since,
in principle, other computational models could be adopted for the same
purpose. Nevertheless, State Machines are directly available in UML
and their expressiveness is adequate for a significant set of application
domains. When a process behavior is to be specified, the behavioral ex-
tensibility is exploited by associating a State Machine with the process.
Interaction with other processes and with external modules is repre-
sented with the transitions triggering: the set of all possible triggers
is naturally associated with a State Machine. In the SystemC imple-
mentation, these triggers are implemented either as <<moduleLinks>>
or as <<processLinks>>. In the first case, it must be possible to fire
the triggers from outside the module. Thus, the triggers must be acces-
sible as interface methods. In the second case, triggers are implemented
by a couple of <<processLink>>: the notification of an event and the
modification of a variable visible at module level.

The main issue in extending the model with State Machines behav-
ioral information is to define a proper translation of the UML diagram
semantics to the target language, in this case SystemC 2.x. There are
different possible implementations of the considered semantics with the
behavioral concepts of SystemC. Among all the possibilities, the follow-
ing translation rules were chosen:

m for each state in a State Machine associated with a process, a Sys-
temC thread is generated. The reason why states are represented
with threads is to allow parallel state activation semantics, present
in State Machines;

m the activation of each state is represented by a boolean signal.
More than one state can be active at the same time;

m for each possible trigger, an event is instantiated. All the state
threads are sensitive to the notification of every trigger event that
can possibly fire a transition from that state;

14

1]

{entry/<entry_act ivity>J

exit/<exit_activity>
b/<activity_1_1>

a [<guard_1_2>] <activity_1_2>

S

Figure 1.3. State transition instance

m 3 variable last_trigger that identifies the last trigger fired as an
enumerated value is instantiated;

m 3 trigger fire is implemented as an event notification and as a
change of the last_trigger variable;

m when a trigger is fired, all the states that are sensitive to it are
awakened; if they are active, the triggered transitions are executed
if the corresponding guarding conditions are true.

As an example, consider the fraction of a State Machine shown in Figure
1.3. The code structure of the thread implementing state 1 is shown in
Figure 1.4.

4. Application Specific UML Modeling

In this section we explore the possibility of using the specialization
mechanisms of UML to define conceptual toolsets that specifically target
an application field, such as multimedia processing or processor design.

First, we evaluate the potential effectiveness of this approach from a
theoretical point of view. Then, we support our analysis by means of a
case study targeting the field of instruction set architecture design.

UML tailoring for SystemC and ISA modelling 15

void state_1_thread() {
while(true) {
wait();
if (state_1_active) {
state_1_entry_action();
switch (current_event) {
case event_a_h:
if (guard_1.2) {
activity_1_2();
state_1_active=false;
state_2_active=true;
break;
¥
case event_b_h:
activity_1_1();
break;
}
state_1_exit_action()
current_event=no_event;

Figure 1.4. State implementation thread

16

In the case study, UML is used to describe the typical concepts used
in the definition of instruction set architectures. A profile is defined, and
its use is exemplified by modeling some sample instruction sets.

4.1 Motivation for Highly Specific System
Design

As we have seen in Section 1.2, high specificity is one of the char-
acteristics that allows a design to be easily understood by an observer.
When the observer knows the application domain, many application-
specific details need not to be made explicit in the description, since the
observer’s knowledge will “fill the gaps” in the description.

However, a description cannot be simply under-specified, since this
will make it understandable only to the observer that has application
specific knowledge and abstraction abilities. Therefore, what should
be done is to create a specialized description language that has highly
specific primitives, allowing a concise but well-defined description of a
system within a given application domain.

From the definition of Application Specificity given in Section 1.2,
we now consider the mechanisms that UML 2.0 offers to customize the
modeling language for the description of highly specific systems. The
main mechanism offered by UML for specialization of a metamodel are
the profiles.

By means of profiles, we can describe highly specific aspects of an
application, while preserving the high level of abstraction offered by
UML.

4.2 Case Study: A UML Profile for the
Description of Processor Instruction Set
Architectures

To evaluate the effectiveness of UML profiles for the description of
highly specific systems, we build a profile (the ISA_profile package) for
processor instruction set architectures (ISA).

Instruction set description languages can be classified as structural
and behavioral (see QMO03). Behavioral languages abstract from the
architecture, and directly describe the ISA semantics. This is the ab-
straction level at which ISA _profile works.

For the purpose of the ISA_profile, a processor ISA is divided into five
components:

m data types;

® microinstructions;

UML tailoring for SystemC and ISA modelling 17

m ISA syntactic specification;
m ISA semantic specification;

m register file and other implementation components.

<<profile>>
ISA _profile
Core::DataType Core::Basic::Class
<<stereotype>> <<stereotype>> <<stereotype>>
BitVector DataTempl Dataltem
<<stereotype>> <<stereotype>>
ISA DataType Concreteltem
Core::Abstraction::Generalization Core::Abstraction:: Association
<<stereotype>> <<stereotype>>
ph_impl composed

Figure 1.5. Stereotype declarations of the elements used in the definition of data
types and items

18

4.2.1 Data Types. The basic elements of the description are
the data items managed by the processor. In our description, these are
always vectors of bits. Therefore, we define a <<BitVector>> stereotype
that becomes the root class for all data types used in the description of
a processor ISA. The Type abstract class defines a bitvector object with
basic operations.

We then define two levels of data type descriptions. First, there is a
level where the only relevant information is the information content of
the data. This level is characterized by the stereotype <<ISADataType>>,
which defines a size attribute.

Then, we add a level that takes into account the nature of the data
- e.g., it allows the distinction of constant items, such as an immediate
operand, from variable items such as registers. This level is character-
ized by the template classes RO_object and RW_object, stereotyped with
<<DataTempl>>. The former defines data items with read primitives,
while the latter inherits from RO_object and adds write methods.

Figure 1.5 shows the definitions of all the stereotypes required to define
data items and types. In addition to the main items mentioned above,
there are a few more elements to consider:

m <<Dataltem>> is the stereotype used to characterize data items;

m <<Concreteltem>> is used to define an architectural component,
such as a special purpose register, by means of the stereotyped
generalization <<ph_impl>> from a data item;

m <<composed>> is used to stereotype associations of <<ConcreteItem>>
objects — i.e., compound registers derived from the composition of
shorter registers as in the “extended” registers of the Intel x86
family.

4.2.2 Microinstructions. To define the semantics of the ISA
elements, we chose an operational specification. Therefore, the definition
of the functionality of an instruction will be given as a State Machine
whose actions are simple atomic operations, called microinstructions.
This allows all defined ISA to be expressed in terms of the microinstruc-
tion language.

Microinstructions are defined through a stereotyped class <<MicroInstruction>>,
and can be collected into several broad categories defined by the <<MicroBlock>>
stereotype.

The Semantic_facilities. Base_MicroInstructions package defines a set
of basic microinstructions. Since the basic microinstructions are an ab-
stract representation of functionality, they do not work on actual data

UML tailoring for SystemC and ISA modelling 19

<<profile>>
ISA _profile
Core::Basic::Class Core::Basic::Operation
<<stereotype>> <<stereotype>>
MicroBlock MicrolInstruction

Figure 1.6.

items. Rather they accept arguments of a single type, that is instances
of the Type class.
User-defined microinstructions, on the other hand, may well be de-
fined to accept a restricted set of data items within the type hierarchy.
The Base_Microlnstructions package, shown in Figure 1.6 includes
the following <<MicroBlock>> items:

m The Memory group, which defines load and store operations that
read an write a memory word;

m The Arithmetic group, which contains the basic arithmetic opera-
tions (addition, subtraction, multiplication);

m The Branch group, which contains a basic set of control operations
(branch on zero, unconditional jump);

m The Logic group, which defines the basic bitwise logical operations
(and, or, not) and bit operations (shift).

4.2.3 ISA Syntax. The syntactic definition of the ISA pro-
vides the description of all the instructions formats allowed in the de-
scribed processor. Instructions must be defined through the stereotype
<<Instruction>>.

An instruction class is associated with the required operands (both
sources and destination) via stereotyped associations. These allow the
description of the following items:

20

<<profile>>
ISA profile

Kernel:: Association

Kernel::Class

<<stereotype>> <<stereotype>>
fixed_source source
<<stereotype>>
Instruction
<<stereotype>> <<stereotype>>
fixed _destination destination

Kernel::Package

Kernel::Classifier

<<stereotype>>
InstructionGroup

<<stereotype>>
int_value

Figure 1.7. Specification of the stereotypes used in the syntactical definition of the
ISA

UML tailoring for SystemC and ISA modelling 21

m <<source>> describes a source register or immediate operand;

m <<fixed source>> describes a source register (or possibly imme-
diate operand) implicitly specified within the instruction — e.g., an
instruction that reads only from a specific register, as in a CISC
processor;

m <<destination>> describes a destination register;

m <<fixed destination>> describes a destination register that is
implicitly specified within the instruction — e.g., an accumulator
register.

Figure 1.7 shows the definition of the stereotypes required for the
syntactic description, including the <<int_value>> stereotype used to
syntactically describe temporary values used in the instruction semantic
definition.

4.2.4 ISA Semantics. The semantics of an instruction is de-
fined in the ISA_profile by means of a State Machine. Microinstructions
can be assigned as actions that are performed at a specified state as a
do clause. The operation is described as a combination of assignments
and microinstructions, according to the following grammar:

do_clause:

assign_statement | action_statement ;
assign_statement:

<Temporary> '=" microinstruction

| <Temporary> =’ register read ;
action_statement:

microinstruction | register_write ;
microinstruction:

<MicroBlock> . <MicroInstruction> ’(’ operands’)’ ;
operands:

operands ’,” operand | operand ;
operand:

<Temporary> | <DataItem>’.’ <ReadOperation> ;
register _read:

<DataItem>’. <ReadOperation> ;
register_write:

<DataItem>’.) <WriteOperation> ’(’ operand’)’ ;

Temporaries must be described in the syntactic specification, using
the data types available in the design.

22

4.2.5 System Components. Some components of the system
must be specified at least partially in order to allow the designer to
define the ISA. For example, the register file should be known — this is
required to allow the use of specific registers such as an accumulator.

Registers are defined as classes stereotyped with <<ConcreteItem>>,
in order to distinguish them from the non-specialized data items. The
<<ConcreteItem>> stereotype points to the fact that the registers are
elements of the structural description of the processor architecture rather
than items of the conceptual description of the instruction set.

<<BitVector>>
Type
(from Semantic_facilities::Data_types)
- content: boolean[]

+ set_bit(position: int, value: boolean): void
+ get_bit(position: int): boolean

<<ISA_DataType>> <<ISA DataType>>
Double_word ‘Word
+ size := 64 { frozen } + size := 32 { frozen }
<<ISA_DataType>> <<ISA_DataType>>
Half Byte
+ size := 16 { frozen } + size := 8 { frozen }

Figure 1.8. Specification of MIPS data types

4.3 Modeling Examples of the Defined Profile

To prove the effectiveness of the defined profile, we applied it to several
architectures. We present here some significant parts of the MIPS (
MIP04) specifications.

4.3.1 MIPS Model. The MIPS is a RISC processor; it has a
register file of 32 64-bit general purpose registers, used for both integer
and floating point values. Memory addresses are 64-bit long.

UML tailoring for SystemC and ISA modelling

23

<<DataTempl>>
RW_Object
(from Semantic_facilities::Data_types)
value: T
+ get_bit(position: int): boolean
+ get_block(start: int, length: int): boolean[]
A
// \ \\
4 \\ AN
/ \ AN
. \ Half N
, <<Bind>> S Bvte
<<bind>> s \ Y
4 d \ . S
/"~ Wor \ <<bind>>
<<Dataltem>> <<Dataltem>> <<Dataltem>>
Immediate_Word Immediate_Half Immediate_Byte
<<DataTempl>>
RO _Object

(from Semantic_facilities::Data_types)

+ set_bit(position: int, value: boolean): void
+ set_block(start: int, block: boolean[]): void
+ set_all(value: boolean): void

Zi AN

N\
\
N
\

7
/
/
A /
<<b1nd>>//
;. Double_word <<bind>>®

. Double_word

<<Dataltem>>
FP _Register

<<Dataltem>>
Register

Figure 1.9.

Specification of MIPS data items

24

Figure 1.8 shows the definition of new data types for the MIPS spec-
ification. The Byte, Half, Word and Double_Word types are declared as
the basic units of information available to the machine. They are bound
to the appropriate types through the <<bind>> stereotype.

The data items, on the other hand, are shown in Figure 1.9. Read-only
objects include the available immediate operands (from byte to word),
while the read-write objects include two logical types of registers, integer
and floating point. These are mapped, in the architecture implementa-
tion, to the same physical register set, but are considered as separate in
the abstract specification of data types.

Figure 1.10 describes the extensions to the set of microinstructions
needed to specify at a high level the floating point operations. Other
microinstructions are created to define operations that work on spe-
cific types — e.g., MicroLoad is specialized into MicroLoad32 and Mi-
croLoad64.

Figure 1.11 shows an example of the instruction syntax for the MIPS,
the definition of two load operations. Both operations have three operands,
two sources and a destination. In both cases, operands 0P2 and 0OP3 are
the source immediate value and register used in the address compu-
tation, while operand OP1 is the destination register. While the LD
operation loads a word as an integer, while L.S loads a single precision
(32-bits) floating point value. Therefore, operand OP1 is in the former
case an association with the Register class, and an association with the
FP_Register class in the latter.

Figure 1.12 and 1.13 show the semantics for the same LW and L.S
operations. The basic behavior of a load operation is exemplified by the
LD, which first computes the address by applying the MicroSum oper-
ation to the first two operands, and then loads the value from memory
to the destination register. L.S is somewhat more complex, since, af-
ter loading the value from memory to a temporary register, it needs to
reset all the bits of the destination register to zero, then to move the
32 bit value from the temporary value to the destination, in the correct
position.

5. Concluding Remarks

The adoption of a high—level formalism for the functional specification
of systems appears to be effective even according to a formal analysis of
the design languages based on the newly defined concepts of abstraction
and application specificity.

As a low specific modeling domain we chose Transaction—Level Mod-
elling, that allows to abstract, in the system level design, implementation

UML tailoring for SystemC and ISA modelling

<<MicroBlock>>
Memory
(from Semantic_facilities::Base_Microinstructions)

<<MicroInstruction>> + MicroLoad(address: Type): Type

<<MicroInstruction>> + MicroStore(address: Type, value: Type): void

<<MicroBlock>>
MIPS_Memory

<<MicroInstruction>> + MicroLoad32(address: Word): Word

<<MicroBlock>>
Arithmetic
(from Semantic_facilities::Base_Microinstructions)

<<MicroInstruction>> + MicroSum(vall: Type, val2: Type): Type
<<MicroInstruction>> + MicroSub(vall: Type, val2: Type): Type
<<MicrolInstruction>> + MicroMult(vall: Type, val2: Type): Type

<<MicroBlock>>
MIPS_FP_Arithmetic

<<MicroInstruction>> + FPMicroSum(vall: Double word, val2:
Double_word): Double word
<<MicroInstruction>> + FPMicroSub(vall: Double word, val2:
Double_word): Double word
<<MicroInstruction>> + FPMicroMult(vall: Double_word, val2:
Double_word): Double word
<<MicroInstruction>> + FPMicroDiv(vall: Double_word, val2:
Double _word): Double_word

Figure 1.10. MIPS semantics: microinstruction extensions

25

26

<<Dataltem>>
FP_Register
(from Abstract_types)

+OP1 | <<destination>>
<<Instruction>>
L.S
<<int_vaTue>> - templ:
<<int_value>> - temp2: Word
- mnemonic : String=L.S
<0P1>,<0P2>(<0P3>)
+ execute(): void
<<source>> +0P2
+0OR%source>>
<<Dataltem>> <<DataIltem>>
Register Immediate_Half
(from Abstract_types) (from Abstract_types)
<<source>>+OP2 <<source>>
+0P3
<<Instruction>>
LD
<<destination>> <<:!.nt_va1ue>> - templ:
<<int_value>> - temp2:
+O0P1 - mnemonic :

Figure 1.11.

String = LD

<0P1>,<0P2>(<0P3>)

+ execute():

void

Example of instruction syntax for the MIPS

UML tailoring for SystemC and ISA modelling 27

. nitial_State_1

(Compute address w
Ldo/ temp = Microinstructions.Arithmetic.Microsum(DP2,0P3.va1ue)J

(Load data
Ldo/ OP1.value = Microinstructions.Memory. MicroLoad(temp)J

. inal_State_1

Figure 1.12. Example of instruction semantics for the MIPS: LD

details of communication between elements. We enriched an existing ap-
proach with the possibility of specifying behavioral features by means
of State Machines. We then explored the possibility to translate the
information present in the UML model into a SystemC 2.x description.

As a highly specific modeling domain, we chose the description of
processor instruction set architectures. We defined a UML profile to
capture the information related to the application domain, and showed
an application of the profile to the description of the MIPS ISA.

From the modelling experiments conducted, UML proved to be effec-
tive in modeling at different levels of abstraction and application speci-
ficity.

28

L.S

. nitial_State_2

(Compute address w
Ldo/ templ = Microinstructions.Arithmetic.Microsum(OPZ,OPS.value)J

(Load data w
Ldo/ temp2 = MIPS_Microinstr.Memory.MicroLoad32(temp1)J

(Reset result w
Ldo/ OP1.value.set_all (O)J

(Set result (word 0) w
Ldo/ OP1.value.set_block(0, temPQ)J

. inal_State_2

Figure 1.18. Example of instruction semantics for the MIPS: L.S

References

Francesco Bruschi, Luciano Baresi, Elisabetta di Nitto, and Donatella
Sciuto. SystemC code gemeration from UML models. Kluwer, 2003.
http://www.elet.polimi.it/upload/bruschi/UMLSystemC.pdf.

Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. In
Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 19-24. ACM
Press, 2003.

Dom website. http://www.w3.org/DOM/.

Luciano Lavagno, Grant Martin, and Bran Selic. UML for real: design
of embedded real-time systems. Kluwer Academic Publishers, 2003.
Christopher K. Lennard, Patrick Schaumont, Gjalt de Jong, Anssi Haver-
inen, and Pete Hardee. Standards for system-level design: practical
reality or solution in search of a question? In Proceedings of the con-
ference on Design, automation and test in Europe, pages 576-585.

ACM Press, 2000.

MIPS Technologies, Inc. MIPS website. http://www.mips.com, 2004.

G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded UML: a Merger
of Real-Time UML and Co-Design. In Proceedings of the Ninth Inter-
national Symposium on Hardware/Software Codesign (CODES 2001),
pages 189-194, 2001.

OMG. OMG XML Metadata Interchange (XMI) Specification, version
1.2, OMG specification. http://www.omg.org/xml/, 2000.

OMG. Omg website. http://www.omg.com, 1997-2004.

OSCI. System c version 2.0 beta-1 user’s guide, 2001. http://www.systemc.org.

Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr.
Lisamachine description language for cycle-accurate models of pro-
grammable dsp architectures. In Proceedings of the 36th ACM/IEEE
conference on Design automation, pages 933-938. ACM Press, 1999.

Wei Qin and Sharad Malik. Architecture description languages for re-
targetable compilation. In Y.N. Srikant and Priti Shankar, editors,
The Compiler Design Handbook — Optimizations and Machine Code
Generation, pages 739-761. CRC Press, 2003.

30

Sax website. http://www.saxproject.org.

B. Selic. Executable uml models and automatic code generation, 2000.

W3C. Xsl transformations (xslt) version 1.0. W3C Recommendation,
November 1999.

Sungjoo Yoo, Gabriela Nicolescu, Damien Lyonnard, Amer Baghdadi,
and Ahmed A. Jerraya. A generic wrapper architecture for multi-
processor soc cosimulation and design. In Proceedings of the ninth
international symposium on Hardware/software codesign, pages 195—
200. ACM Press, 2001.

Jianwen Zhu, Daniel D. Gajski, and Rainer Doemer. Syntax and seman-
tics of the spec C+ language. In Proceedings of the SASIMI Workshop,
pages 75-82, 1997.

V. Zivojnovic. Lisa - machine description language and generic machine
model for hw/sw co-design. In In Proc. of IEEE Workshop on VLSI
Signal Processing, 1996.

