
Programming Highly Parallel Reconfigurable
Architectures for Symmetric and Asymmetric

Cryptographic Applications
Giovanni Agosta, Luca Breveglieri, Gerardo Pelosi, Martino Sykora

Politecnico di Milano
Dipartimento di Elettronica e Informazione (DEI)

Via Ponzio, 34/5, 20133 Milano, Italy
Email: {agosta,brevegli,pelosi,sykora}@elet.polimi.it

Abstract— Tiled architectures are emerging as an archi-
tectural platform that allows high levels of instruction
level parallelism. Traditional compiler parallelization tech-
niques are usually employed to generate programs for these
architectures. However, for specific application domains,
the compiler is not able to effectively exploit the domain
knowledge. In this paper, we propose a new programming
model that, by means of the definition of software func-
tion units, allows domain-specific features to be explicitly
modeled, achieving good performances while reducing de-
velopment times with respect to low-level programming.
Identity-based cryptographic algorithms are known to be
computationally intensive and difficult to parallelize au-
tomatically. Recent advances have led to the adoption of
embedded cryptographic coprocessors to speed up both
traditional and identity-based public key algorithms. We
show the effectiveness of the proposed programming model
by applying it to the case of computationally intensive
cryptographic algorithms in both identity-based and tradi-
tional algorithms. Custom-designed coprocessors have high
development costs and times with respect to general purpose
or DSP coprocessors. Therefore, the proposed methodology
can be effectively employed to reduce time to market while
preserving performances. It also represents a starting point
for the definition of cryptography-oriented programming
languages. We prove that tiled architecture well compare
w.r.t. competitors implementations such as StrongARM and
FPGAs.

Keywords: identity-based cryptography, tiled architec-
tures, parallel programming model, reconfigurable archi-
tectures, multiobjective exploration.

I. I NTRODUCTION

Since traditional microprocessors are becoming in-
creasingly complex, leading to high design and manu-
facturing costs, new trends in architectures are moving
towards partitioned register file architectures, such astiled
architectures, which allow high levels of instruction level
parallelism combined with good scaling properties. These
architectures are currently considered for both general
purpose and DSP applications.

This paper is based on “Programming Highly Parallel Reconfigurable
Architectures for Public-key Cryptographic Applications,” appeared in
the Proceedings of the 4th International Conference on Information
Technology (ITNG 2007), Las Vegas, USA, April 2007.c© 2007 IEEE.

The public key cryptographic algorithms are compu-
tationally intensive, so that the current research trend
is oriented towards the adoption of application specific
coprocessors, often based on reconfigurable hardware, to
reduce time to market.

In several cases, multimedia data may be encrypted
for content distribution. To this end, the most commonly
applied solution, for efficiency reasons, is to combine
a symmetric encryption schema to enforce the desired
authentication requirements.

DSP-oriented tiled architectures could be used to obtain
further improvements in time to market, cost and per-
formance, provided that the parallel pipelines can be ex-
ploited intensively to limit the hardware area. To this end,
new programming models are required, because standard
compiler techniques are not able to extract parallelism
from these algorithms at both task and instruction level.

In this paper, we propose a new programming model
that, by means of the definition of software function
units, allows domain-specific features to be explicitly
modeled, achieving good performances while reducing
development time with respect to low-level programming.
We show the effectiveness of the proposed programming
model by applying it to the case of a computationally
intensive cryptographic primitive such as pairings, which
is heavily based on the efficient computation of the
underlying multi-precision arithmetic as in most public
key algorithms. Asymmetric cryptographic systems are
especially interesting in embedded systems when the
application requires fingerprinting capabilities, eitherto
guarantee that the originator of the data is known, or to
guarantee that, if the receiver redistributes the data, these
can be traced back to them.

The basic idea is that of including within the transmit-
ted data a watermark, i.e. a modification of the original
data (awatermark or fingerprint) that is small enough to
make the data still useful for their original purpose (in
media, this generally means that the pictures, movies and
sounds should preserve their quality from the point of
view of the user), and allows the identification of either
the sender, the receiver, or both. Moreover, properties such
as the impossibility to alter the fingerprint without making

50 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

the data useless may be required, depending on the actual
application scenario.

Two important applicative scenarios are readily avail-
able. The first concerns a typical e-commerce scheme
where a merchant and a buyer exchange data. The buyer
receives some form of media, possibly on a handheld
device, a set-top box or other embedded device, that he
should not distributes to third parties. This can be ensured
by adding a fingerprint based on the buyer’s secret key,
which is therefore verifiable using their public key by the
merchant and by authorities. In this case, the fingerprint
should not be removable without making the data useless,
not even by comparing different fingerprints. Additional
problems include the anonymity of the buyer – i.e., the
merchant should not be able to trace the buyer unless the
redistribute the data. Several asymmetric fingerprinting
schemes have been developed for this purpose [1]–[3].

A second scenario concerns the case where attribution
of a video, audio or picture is needed for legal purpose
– such forms of digital evidence need authentication to
be used in court, and since most digital data can be
easily tampered, such authentication can be provided by
fingerprinting techniques. Asymmetric fingerprinting in
this case can provide means to attribute data to a specific
recording device (assuming of course one can prove that
the device itself has not been tampered with). In this
scenario, the secret key is stored in the tamper-proof
recording device, which performs the encoding process.
This way, every datum that is transmitted from the device
can be traced back to it.

The rest of this paper is organized as follows. Section II
gives the essential mathematical background on crypto-
graphic parings. Section III introduces tiled architectures
and their interconnection structure. Section IV outlines
the proposed programming model, as well as two case
studies showing the implementation of software func-
tion units in identity-based and symmetric cryptography.
Section VI provides an experimental evaluation of the
proposed programming model. Finally, Section VII draws
the conclusions and suggests future research directions.

II. CRYPTOGRAPHICPAIRING BACKGROUND

A cryptographic pairing is a bilinear map between two
groupsG1, G2 where the discrete logarithm problem is
hard.

t <, >: G1 ×G1 → G2

Let P, Q, R ∈ G1 then

t(P + R, Q) = t(P, Q)t(R, Q)
t(P, Q + R) = t(P, Q)t(P, R)

During the last few years, pairings have been successfully
employed in order to work out several open problems
in cryptography such as, one-round three-way key ex-
change [4], identity-based encryption [5], and short digital
signatures [6]. For further deepenings on the protocols
that make use of pairing primitives we send back to [7],
[8] and their references. The Weil and Tate pairings

on elliptic curves over finite fields represent the mathe-
matical basics to construct identity-based cryptographic
primitives. These pairings are bilinear maps from an
elliptic curve groupE(Fq) to the multiplicative group of
some extension fieldFqk . The parameterk is called the
embedding degree of the elliptic curve [9], [10].

The pairing is considered to be secure if the discrete
logarithms in the groupsE(Fq) and E(Fqk) are both
computationally infeasible. For optimal performance, the
parametersq and k should be chosen so that the two
discrete logarithm problems are of approximately equal
difficulty when using the best known algorithms, with
the order of#E(Fq) having a large prime factorr. The
best attack known on the elliptic curve discrete logarithm
problem is theparallel collision search that improves on
the Pollard’sρ-algorithm [11]. A pairing is considered
as secure as 1024-RSA, whenr ∼ 2160, k ranges from
2 to 10, depending on the application, andpk ≥ 21024.
In the wake of recent works [12]–[14] on pairings over
general curves over pairing friendly fields of large prime
characteristic, the proposed programming model will be
aimed to the implementation of the Tate pairing primitive
in characteristicp with k = 2 andp ∼ 2512. The current
algorithm to compute the pairing is a careful refinement
of the well known BKLS/GHS algorithms as described
in [9], [10], [15].

The cryptographic usage of the Tate pairing involves
the application of Miller’s Algorithm [16] followed by
a final exponentiation. The pointP is chosen as an
element ofE(Fp) with order r. The pointQ is chosen
as an element ofE(Fpk) which is mapped from the
twisted curve. Miller’s algorithm uses the double and
add schema for elliptic curve point multiplicationrP ,
with some more operations to evaluate intermediate values
of the pairing that are multiplicatively accumulated to
compute the output of the algorithm [17]. Miller’s algo-
rithm performs⌈log2 r⌉ − 1 iterations executing almost
always the block of operations corresponding to apoint
doubling. Indeed, if a low hamming weightr is used
then only fewpoint additions will be required (e.g. 1-
10). The core idea behind this work is to investigate
ways to combine instruction-level parallelism that can be
found in the implementation of multiprecision arithmetic
operations with task-level parallelism among the finite
field operations involved in the computation of pairings.

III. T ILED ARCHITECTURES

Recent trends in microprocessor design are moving
towards partitioning processor resources such as register
files, cache banks and pipelines. InVery Long Instruction
Word (VLIW) architectures, a single program counter
controls several pipelines that access the same register file.
However, this structure does not scale well, since large
register files are impractical.Tiled architectures, such as
Raw [18], Wavescalar [19] and TRIPS [20], represent
an evolution of VLIWs, partitioning the register file so
that each pipeline or cluster of pipelines (called a tile, a
computational node or simply a node) can access a private

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 51

© 2007 ACADEMY PUBLISHER

register bank. While this allows smooth scaling, it poses
communication problems, as data need be moved among
the different pipelines, moreover, since the register file is
partitioned, communication must take place on an inter-
connect network, called ascalar operand network [21].
These issues must be dealt with by the compiler, which
is in charge of scheduling instructions not only in time,
but also in space – that is across different nodes. Explicit
communication instructions must be issued to synchronize
the register file partitions.

In this work, we focus on DSP-oriented tiled coproces-
sors with a single control flow, since they are the direct
competitor of the FPGA and ASIC solutions for public
key cryptographic algorithms. More complex nodes, such
as those of Raw (a MIPS pipeline with private data and
instruction caches) would be orders of magnitude larger
and more costly than the industry standard solutions.

A tiled architecture is an array of nodes, where each
node is a computing element accessing its own register file
and exposing a set of private function units. When all the
nodes have the same type of function units, the architec-
ture is homogeneous, and heterogeneous otherwise. The
migration of the operands among clusters is demanded to
a word-level communication network and is controlled by
special instructions – likesnd or rcv – executed by the
nodes themselves, or by dedicated hardware. This kind
of architecture belongs to the family of Scalar Operand
Networks (SON), and can be characterized by the AsTrO
taxonomy [21], which specifies whether the assignment
of the instructions, the transport of the operands and the
ordering of the instructions are statically or dynamically
performed.

DSPFabric [22], by STmicroelectronics, is a tiled ar-
chitecture specifically designed for modulo scheduling
computationally intensive loops of multimedia applica-
tions. With respect to the AsTrO taxonomy, it is a Static-
Static-Static SONs, which means that the assignment of
the instructions, the displacement of the copies and the
scheduling passes are compiler tasks. Moreover, DSP-
Fabric is characterized by coarse-grained reconfigurable
data-paths. The compiler must select a subset of feasible
node connections for data flowing, and emits at compile
time the reconfiguration instructions that activate the
selected wires. These reconfiguration instructions change
at runtime the network topology, tailoring it to the specific
code.

The reconfiguration space – the space of feasible
topologies – is tailored by the constraints given by the
availability of I/O ports with respect to the total number
of connecting wires. In the DSPFabric organization, each
node can be potentially connected to all the others, ex-
ploiting a hierarchical interconnection schema, based on
different levels of MUXes. Effective limitations are given
by the MUXes capacity. We describe in the following
the DSPFabric architecture, focusing the attention on the
structure of the interconnections.

A. DSPFabric Architecture

Figure 1 gives an overall picture of a 64 nodes DSP-
Fabric coprocessor. At level 0 it can be seen as an array
of four 16-issue processors (clusters), communicating
through a collection of multiplexers, which implements
a multi input/output switch. Each cluster hasN input
wires andN output wires, where the output wires are
possibly connected to all the others. On the contrary, the
input wires can be connected to only one source. Figure
2 shows a feasible data path at level 0, assumingN

equal to 4. At level 1, the spatial structure replicates

N N

N
N

N
N

N N

M

M

M

M

M

M

M

Level 2

M

L
ev

el
 1

 M
U

X
es

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

Crossbar

2 2 2 2

 K

c0 c1 c2 c3

Level 0 MUXes

Cyclic PC

memory

Microseq
 Selector

 FUs

 Register

 File

output data

input data

Figure 1. A DSPFabric architecture with 64 nodes.

0 1

23

Figure 2. A feasible interconnection among clusters sets. Assuming the
output and input capacities of 4 wires, cluster set 0 and 1 have saturated
their available output and input wires, respectively.

itself inside each cluster, again with an array of 4-issue
processing elements, connected together by multiplexers
with capacity M . The last level is composed by the
computation nodes connected through a reconfigurable
crossbar, which takes as input the internal connections and
K of the wires outgoing from level 1. Each computation
node has two ingoing wires and one outgoing wire.

The computation nodes are single issue pipelined pro-
cessors, accessing their own register file and functional
units. Since DSPFabric has been specifically designed
as a loop accelerator coprocessor for multimedia appli-
cations, each node is equipped with hardware features
for better executing modulo scheduled code [23]; e.g.,
the node contains support for instruction predication and
rotating registers. Precisely, the application is scheduled
using the Kernel Only Modulo Scheduling [23] technique,
which fully predicates loop prologue and epilogue. Thus,

52 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

branches are not allowed and the execution is controlled
by a cyclic program counter.

The copies between different register files are con-
trolled by thereceive primitive executed by the desti-
nation node. Two regions of the register file are organized
as input buffers, which push on top the incoming values,
but can be read randomly by the receiver.

The coupling with the main memory subsystem is
demanded to a programmable DMA. Each node can gen-
erate an address request, which is directly sent to DMA
without consuming inter-cluster communication patterns.
Only a limited number of requests can be served at the
same time, i.e. 8 requests, thus the compiler must ensure
that the amount of simultaneous requests does not exceed
that limit. Since the memory requests do not have unary
latency, the DMA engine provides input and output FIFOs
– of depth equal to the serving time – for handling high
memory pressure. When a value is ready it is directly
loaded into the requesting cluster register file.

Since DSPFabric – and, more generally, all the copro-
cessors designed for multimedia embedded applications
–is specifically designed for performing media streaming,
and the input/output streams are characterized by a highly
regular structure and largerly independent data, the DMA
programmable interface allows to perform efficient data
buffering and to mask the memory latencies.

IV. PROGRAMMING MODEL & COMPILER

TECHNIQUES

In this Section, we discuss the limitations of the
compiler techniques for scheduling the target algorithms
on tiled architectures, and propose a new programming
model to deal with these issues. We apply the proposed
programming model to the case of the Tate pairing
computation.

TABLE II.
IMPLEMENTATION OF THE32 × 32 MULTIPLIER AS A SW FUNCTION

UNIT USING 16 BIT MULTIPLIERS PROVIDED BY THE TARGETISA.

and a0,X0,0x0000FFFF and b0,Y0,0x0000FFFF
shftr a1,X0,16.rcv b0 shftr b1,Y0,16. rcv a0
mul c00,a0,b0 mul c01,a0,b1. rcv a1
mul c10,a1,b0 mul c11,a1,b1
and x,c10,0xFFFF0000 shftl w,c01,16
shftl y,c10,16. rcv w and z,c01,0xFFFF0000.rcv x
add ml0,c00,y add mh0, c11, z
cmpgt r0,y,ml0 add mh0, mh0, x
add ml0,ml0,w
cmpgt r00,y,ml0. rcv mh0
add r0,r0,r00
add mh0, mh0, r0

A. Compiler Techniques for Tiled Architectures
Tiled architectures are specifically designed for the exe-

cution of computationally intensive kernels of multimedia
applications, e.g. Inverse Cosine Discrete Transform, in-
terpolation and de-blocking filters. A typical scenario is
to employ such machines as innermost loop accelerators
– implemented as coprocessors and coupled with the cen-
tral processing system. These loops are characterized by

largely independent operations and low memory aliasing,
exposing a high degree of potential Instruction Level
Parallelism (ILP). Moreover these kernels are usually
quite small – in the range from 100 to 1000 instructions
in the loop body.

Since these architectures are conceived for loop acceler-
ation, they typically provide hardware features to enhance
Modulo Scheduling [23] compiler technique, like support
for predicated execution and rotating registers [24].

The compiler front-end recognizes in-code pragmed
loops as suitable to be mapped onto the coprocessor,
then translates them into an intermediate representation.
At the intermediate level a loop is described by its Data
Dependency Graph (DDG), where each node represents
a native (assembly) instruction and each edge is a data
dependence between two adjacent instructions.

The compiler back end assigns the node of the DDG
to the clusters and schedules them, compatibly with
the data, resources and communication constraints. The
challenge is to extract the maximum degree of parallelism
and, at the same time, to limit the penalties due to
explicit inter-cluster operand copies. Different approaches
have been proposed for performing cluster assignment
and scheduling, considering both 2-phases and unified
techniques [25]–[29].

The compiler is typically driven by in-code pragmas,
which select the loops to map onto the multi-clustered
coprocessor. As intermediate representation the loop is
described by its Data Dependency Graph (DDG), where
each node represents a native instruction and each edge
introduces a data dependence between instructions.

The behavior of the compiler back end is to assign
the instructions to the clusters and to schedule them,
compatibly with the communication net topology, the data
dependencies and the resource constraints. The compiler
tries to extract the maximum degree of parallelism and,
at the same time, to limit the penalties due to explicit
inter-cluster operand copies. Different approaches have
been proposed for performing cluster assignment and
scheduling, considering both 2-phases and unified tech-
niques [25]–[29].

Since these architectures are conceived for loop acceler-
ation, they typically provide hardware features to enhance
Modulo Scheduling [23] compiler technique, like support
for predicated execution and rotating registers [24].

Trying to map and schedule a complex cryptographic
algorithm, i.e. Tate pairing, following this programming
model – thought for different scenarios – arises several
constraints and rapidly leads to low quality or indeed not
schedulable code.

When observed at a high level, the Tate pairing al-
gorithm is a single loop that presents high parallelism
at the level of operations between very long integers,
e.g. multiplications of 32 words-length operands. These
operations, if written in a high level source code asC, will
appear as cyclic algorithms, exposing an internal degree
of parallelism. The only way to exploit the high level
parallelism is to completely unroll all the internal loops

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 53

© 2007 ACADEMY PUBLISHER

TABLE I.
IMPLEMENTATION OF THE MODULAR ADDER AS A SOFTWARE FUNCTION UNIT.

add s1,a1,b1 add s11,a1,b1
add s1,s1,1 cmpgt c21,b1,s11 add s2,a2,b2 add s21,a2,b2
cmpgt c2,a1,s1.rcv c1.rcv c21 add s2,s2,1 cmpgt c31,b2,s21
slct c2,c1,c2,c21 cmp c3,a2,s2.rcv c31 add s3,a3,b3 add s31,a3,b3

rcv c2 add s3,s3,1 cmpgt c41,b3,s31
add s1,c1,m1 add s11,c1,m1 slct c3,c2,c3,c31 cmp c4,a3,s3.rcv c41
add s1,s1,1 cmpgt r21,m1,s11 add s2,c2,m2 add s21,c2,m2 rcvc3
cmpgt r2,c1,s1.rcv r1.rcv r21 add s2,s2,1 cmpgt r31,m2,s21 slct c4,c3,c4,c41
slct r2,r1,r2,r21 cmp r3,c2,s2.rcv r31 add s3,c3,m3 add s31,c3,m3

rcv r2 add s3,s3,1 cmpgt r41,m3,s31
slct r3,r2,r3,r31 cmp r4,c3,s3.rcv r41

rcv r3
slct r4,r3,r4,r41

into the outer-most one, and then try to modulo schedule
the whole resulting loop.

This approach is computationally hard, since the
scheduling problem is NP-complete and the size of the
input data in this case (the nodes of the DDG) grows
quickly – more than 300000 nodes for a 512-bit Tate
pairing implementation.

Therefore we propose a novel compilation approach,
which allows to exploit the available parallelism, decou-
pling the problem into two phases. The former determines
the function units needed to support the high level paral-
lelism, the latter programs each function unit scheduling
the code at fine-grain of parallelism.

B. Proposed Programming Model

Cryptographic algorithms that use multi-precision inte-
ger arithmetic are representative of a class of applications
that present peculiar properties in terms of available paral-
lelism and program structure. Specifically, computation-
ally intensive public key cryptographic algorithms such
as the Tate pairing implementation in [30]–[32] can be
parallelized attask level (TLP), as proven by a wide range
of literature on the design of hardware implementations
that typically use replicated modular arithmetic circuitsto
exploit this type of parallelism [33], [34]. The design of
the individual modular arithmetic circuits highlights the
availability of a significant amount ofinstruction-level
parallelism (ILP): the parallel operations in hardware
can be transposed to parallel instructions in the software
implementation. On the other hand,loop-level parallelism
(LLP), that is the opportunity to perform different itera-
tions of the same cycle on different computational ele-
ments, is less easily found in this type of application, due
to the need to propagate loop carried data dependencies
(such as the carry propagation for the integer ormod p
arithmetic) across the iterations of a given loop. Since
LLP is the type of parallelism most easily exploited by
compilers, while TLP is especially difficult to extract
by means of a compiler, these algorithms prove to be
particularly difficult to parallelize automatically.

To tackle this issue, our method highlights TLP and ILP
in the target algorithms, by mirroring typical hardware
design concepts, such as specialized arithmetic hardware.
Specifically, in the proposed model, the target algorithm
is written using a library of software components that

perform the same operations as specialized hardware
function units for multi-precision integer arithmetic. The
codesoftware function units are optimized for the target
architecture, customizing the connections between tiles
of the architecture to fit their data propagation schemata.
Since carry propagation flows one-way from the least
significant word to the most significant one, it fits well
for a very regular structure that can be easily mapped
to the configurable connections between computational
nodes, as each node need synchronize itself only with
its neighbours.

Each software function units is, on a given target ar-
chitecture, characterized by two parameters: the schedule
length and the resource usage, in terms of number of com-
putational nodes. This characterization mirrors closely the
area and latency parameters of an hardware function unit.
Therefore, a top-down approach can be used, applying
well-known methodologies for the design of the controller
datapath. In this way, the high-level representation of the
algorithm is mapped to the software function units by
means of a list-based scheduling algorithm [35].

V. CASE STUDIES

In this Section, we describe two case studies run using
the programming model described in the previous Section.
The first case study deals with the design of a low-level
multi-precision arithmetic library in terms of software
function units and its application in the implementation of
a Tate pairing algorithm. The second case study presents
a more complete design, using the IDEA cryptosystem as
the target algorithm.

A. Modular Arithmetics
The goal of this Section is to describe the design of a

basic multi-precision arithmetic library. The Montgomery
multiplier is the main element of any such library. To this
end, we need to first develop basic function units such
as the modular adder and the word-by-vector multiplica-
tion, with the aim of composing them to implement the
main loop of the Montgomery multiplier as described in
Algorithm V.1.

Table I shows the basic schema for a modular adder.
Each column of the table represents the schedule of a
single computational node. For each word of the multi-
precision operands to add, a pair of nodes is used to

54 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

speculatively execute both the case with and without
carry. The table considers the case of only three word
multi-precision operands, but the extension to larger sizes
is straightforward. Figure 3 shows how the adder can be

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

1 2 3 4 5 6 7 8 9 10111213 1 2 3 4 5 6 7 8

Figure 3. Time/space scheduling of a 128-bit modular addition: the dark
shaded areas represent the non-modular adder (as describedin Table I),
while the light shaded areas implement the modulo operation.

further optimized to reduce resource usage: the modular
adder unit is shown on the left, while on the right the
pipelined operations have been compacted onto 8 compu-
tational nodes only, without penalty for the performance.
This kind of optimization, while demonstrated only for a
128-bit modular adder, seamlessly scales to larger input
sizes, requiring only 8 nodes and2n + 6 clock cycles,
wheren is the number of words of the input.

Table II provides an implementation of the basic 32
bit multiplier unit using 16 bit multipliers provided in the
target architecture. The 32-bit multiplier, not availablein
the original architecture, is obtained as a software function
unit using the native 16 bit multipliers. The word-by-
vector multiplication is obtained by juxtaposing 32 bit
multipliers, followed by a multi-precision (non modular)
adder unit that handles carries. This method of obtaining
larger units by composing smaller ones is fully developed
in the generation of hierarchic software function units: an
adder and the word-by-vector multiplier are used to design
the Montgomery multiplier.

The Montgomery multiplier is based on the core loop
shown in Algorithm V.1, whereA and B are the input
operands, whileN is the modulus,w is the size of the
word, b = 2w andN ′

0 is the least significant word of the
modular inverse ofN , modulo the Montgomery radix. In
this implementation, the number of iterations performed
is n + 2 to bound the result in the range[n, 2n] for
multiplicands up to2n. This is achieved by eliminating
the final subtraction in the original Montgomery algorithm
and, as a consequence, after the inputs are converted
in the Montgomery domain, the operations of the high-
level algorithm are all performed therein. Note that
the composition of the larger function unit takes into
account the shape of the scheduled code of the component

Algorithm V.1 : Montgomery multiplier core loop.

Input : x, y ∈ [0, 2N), NN ′ −RR′ = 1, n =
lg2⌈N⌉, b = 2w, R = bn, N ′ ≡ N−1

mod R = (N ′
n−1, N

′
n−2, . . . , N

′
0)b, R

′ ≡
R−1 mod N

Output : xyR−1 mod N ∈ [0, 2N)
x← 01

for i← 0 to n + 1 do2

t← N ′
0x0 mod b3

if t 6= 0 then4

x← x + tN5

x← x >> w + AiB6

return x7

units: by compacting the pipelined computations, it is
possible to achieve a performance gain that would not be
possible were the components implemented as functions.
C functions either require call mechanisms that enforce
a barrier synchronization between the two computation
steps, or inline mechanisms that would lead back to the
explosion in the node number of the dataflow graph.

B. High-level Scheduling

Given the software function units described in Sec-
tion V-A, in order to implement a public key crypto-
graphic primitive, we need to encode it in terms of the
software function units. Then, we can explore the possible
high-level schedules by means of automatic scheduling
tools, such as those presented in [35].

For the Tate pairing algorithm in characteristicp,
Figure 4 shows the dataflow graph of the doubling step
of the core loop body. The nodes are arranged so that
high-level parallelism is emphasized, following an ASAP
scheduling policy without resource constraints, thereby
showing the maximum available parallelism at any given
time. The figure highlights the presence of a significant
amount of parallelism, making the exploration of per-
formance vs. area tradeoffs worth being conducted. The
typical structure of the Miller’s algorithm, upon which
the implemented Tate pairing algorithm [17] is based,
includes a conditional branch that is only taken when
the scan of the binary expansion of the scalarr (see
Section I) meets a 1. The implementations ensure that
the Hamming weight ofr is minimal – in the range of
1 to 10. Since this operation is rarely executed (less than
1% of the iterations), it is handled in a tiled architecture
such as DSPfabric by the intervention of the controller
processor, which causes the coprocessor control to flow
from the main iteration loop to a secondary code that
is optimized for the branch execution. The alternative of
predicating the branch code is feasible, but the size of
the secondary code and the fact that the primary path is
much faster (it does not have any instruction to execute)
would cause the predicated code to negatively affect the
performance.

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 55

© 2007 ACADEMY PUBLISHER

Cycle-carried dependency

z1s=s(z1)

z1ss=s(z1s)t10=*(qx, z1s) t14=*(qy, z1s)

x1s=s(x1)

t2=-(x1s, z1ss)

y1s=s(y1)

t4=*(x1, y1s)y1ss=s(y1s)

t6=*(y1, z1)

z3=<(t6, one)

m0s=s(m0)

t0=-(m0s, m1s)

m1s=s(m1)t17=*(m0, m1)

t1=<(t17, one)

l2=<(t4, two)t5=<(t4, tre) t9=*(y1, z3) t15=*(z1, z3)l3=<(y1ss, tre) t11=+(t10, x1)

n1=*(t14, t15)

t20=*(t0, n1)

t18=*(t0, n0)

t19=*(t1, n1)

t21=*(t1, n0)

t3=<(t2, one)

l1=+(t3, t2)

t7=-(l2, x3)

x3=-(l1s, t5)

y3=-(t8, l3)

n0=-(t9, t13)

t13=*(t12, t11)

l1s=s(l1) t12=*(l1, z1)

t8=*(l1, t7)

m0=+(t18, t19) m1=-(t21, t20)

Figure 4. High-level scheduling of the dataflow graph for thedoubling
step of the Tate pairing algorithm [17].< is the modular left shift oper-
ator, +/− are the modular adder/subtracter, and∗ is the Montgomery
multiplier

C. IDEA

The International Data Encryption Algorithm (IDEA)
is a symmetric key block cipher developed by Lai and
Massey and published in 1990 [36]. At that time it was
suggested as a candidate to replace DES, however its
widest adoption has been in PGP which has insured
widespread use of the algorithm. Commercial applications
show enforcements of the encryption algorithms for IPVT
stream decoding.

IDEA uses a 128–bit key to encrypt data blocks of
64 bits by means of an iterative process made of eight
rounds followed by a half-round that provides a 64–
bit encrypted output. IDEA makes use of three 16–bit
operations to implement strong cryptographic confusion
properties: 16–bit XOR, 16-bit addition (modulo216), and
16-bit multiplication (modulo216 + 1, a Fermat prime).
IDEA round keys are generated using a non-standard
rotate-left of 25 bits on the provided 128–bit key. The
first eight keys are provided by the input key, and each
additional set of eight keys is generated by performing
a circular left shift of 25 bits of the previous eight key
set. As each round requires only six keys, the subkey
bits used differ within each round, providing an effective
mechanism for bit variance within the keys used.

IDEA can therefore be decomposed in a small set
of primitives can be: modular addition, modular multi-
plication, and bitwise exclusive or. The most complex
primitive, in a software implementation, is the modular
multiplication. We present here the implementation of this
primitive as a function unit. The remaining primitives and
the composition of the complete system are straightfor-
ward.

Figure 5 shows a simplified version of the DSPfabric
implementation of the modular multiplication used in
IDEA, not scheduled.Rx and Ry are the registers that
hold the values of the data block and key (actually, several
registers are needed when the code is scheduled, to hold
copies that are to be moved to different clusters). Registers

Figure 5. Modular multiplication for the IDEA cryptosystem
A: setv R1 if Ry
B: setnv Ry if not Ry
C: add Rx Rx R2
D: setv R6 if Rx
E: setnv Rx if not Rx
F: sub Rx Rx R1
G: sub Rx Ry R6
H: mul Rx Rx Ry
I: and Rx Rx R2
J: sub R7 Rx R3
K: cmplt R5 Rx R7
L: sub Rx Rx R7
M: add Rx Rx R5

Figure 6. Data transfer graph for the modular multiplication

H G

D B

F

AC

E

I J

K L

M

R1, R2, R3 andR6 hold the constants (pre-loaded before
starting the coprocessor), while the remaining registers
hold short lived temporaries. DSPfabric uses a set of
predicated registers to allow efficient conversion of con-
ditionals to predicated executions. Instructions are only
performed if all input predicates are true. Thesetv and
setnv instructions set (to true or false) the predicate of
the destination register if the source register is (or is not)
zero. An alternate implementation, usingslct instructions
as in the Tate Pairing case study is also possible.

Figure 6 shows the copies that must be performed
between the instructions of the modular multiplication
algorithm. It can be seen that each instruction can be
implemented in a different cluster, having at most two
incoming and two outcoming connections. This allows a
full pipelining of the algorithm, giving a throughput of
one block per cycle.

56 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

VI. EXPERIMENTAL RESULTS

In this Section we provide experimental evidence to
support the effectiveness of the proposed approach. First,
we gauge the complexity of the software function units
in terms of both area (that is, number of CPUs) and
latency. Table III summarizes the computational complex-
ity for the simpler units, while Tables IV and V show
the complexity of two different implementations of the
Montgomery multiplier. Analytically, these figures can be
derived from Equations (1) and (2), where Equation (1)
represents the basic version of the Montgomery multiplier,
while Equation (2) refers to the area-optimized version
of the same unit, which splits theAiB word-by-vector
multiplication in Algorithm V.1 to execute it in parallel
with tN and the subsequent addition, to reduce the
number of used processors.

T = (n + 2)

„

52n

cpu
+ (2n + 1) + 5

«

(1)

8 ≤ cpu ≤ 4n

T = (n + 2)

„

26n

cpu
+ max



26n

cpu
, (2n + 1)

ff

+ 5

«

(2)

16 ≤ cpu ≤ 2n

In these equations,n is the number of input words, while
cpu is the total number of nodes in the tiled architecture.
In order to evaluate the effectiveness of the high-level

TABLE III.
COMPLEXITY OF THE SOFTWARE IMPLEMENTATIONS OF FINITE

FIELD OPERATIONS IN TERMS OF NUMBER OF INPUT WORDS

n = ⌈log
2

m⌉�w.

Finite Field Operations Clock Cycles # of CPUs
x ± y mod m 2n + 6 8
x · y mod m (n + 1)(2n + 19) 2n

x << z mod m 2n + 2 8

TABLE IV.
EXECUTION TIME AND TIME /AREA PRODUCT FOR THE SOFTWARE

IMPLEMENTATION OF THE MONTGOMERY MULTIPLIER AS A

FUNCTION OF INPUT WORDS AND NUMBER OF EMPLOYEDCPUS.

Input Number Time Time × Area
sizen of CPUs [clk] [clk×#CPU]

4 8 200 1600
4 16 135 2160
6 8 399 3192
6 16 259 4144
8 8 666 5328
8 16 432 6912
8 32 315 10080

16 8 2414 19312
16 16 1530 24480
16 32 1088 34816
16 64 867 55488

scheduling, we perform a multiobjective exploration of
the design space defined by the architectural parameters,
that is the number of Montgomery multipliers, modular
adders and shifters available in the system, as well as the
implementation of the employed Montgomery multipliers,
as described in Tables IV and V.

Figure 7 sketches the Pareto frontier for the multiobjec-
tive exploration problem of finding the best configurations

in terms of both area and latency. The notion of Pareto op-
timality states that a solution is optimal if it is impossible
to find a solution which improves on one or more of the
objectives without worsening any other of them. If one
solution is better in one objective than another solution
and not worse in any other objectives, the latter is domi-
nated by the former, which is always preferred. This set of
solutions is called the Pareto frontier and is guaranteed to
contain all optimal solutions, whatever way the individual
objectives are weighted relative to each other. To put it
in other words: the Pareto frontier exactly captures the
available trade-offs between the different objectives. The

TABLE V.
TIMINGS OF THE SW IMPLEMENTATION OF THE MONTGOMERY

MULTIPLIER USING HIGH LEVEL PARALLELIZATION , AS A FUNCTION

OF INPUT WORDS AND NUMBER OF EMPLOYEDCPUS.

Input Number Time Time × Area
sizen of CPUs [clk] [clk×#CPU]

8 16 315 5040
16 16 1088 17408
16 32 867 27744

Pareto frontier shown in Figure 7 gives a set of possible
solutions. Then, time or area constraints should be applied
to select the best solution. If no constraint is specified,
then it is possible to observe that the optimum point using
a time× area figure of merit is the architecture with 4
Montgomery multipliers, each implemented on 16 nodes,
plus one shifter and one adder, which needs just over 1
million cycles to perform the entire pairing primitive.

However, if the goal is to optimize time, then, by
employing large hardware resources, it is possible to cut
down the execution times by 30%. On the other hand,
if a compact device (e.g., 48 CPUs) is required, there is
slowdown by a factor of 2 with respect to the time× area
optimum.

The exploration also allows to better evaluate the im-
plementations of the individual units. In our case, it shows
that the 16 CPUs Montgomery multiplier implementation
is superior to the equivalent implementations on 32 or 8
CPUs. Comparing our approach with FPGA competitors

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

A
re

a
[#

cp
u]

Time [clk]

Pareto points

Figure 7. Pareto frontier for the area/latency tradeoff as amultiobjective
goal function.

is difficult, since related works [33], [37] are based on

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 57

© 2007 ACADEMY PUBLISHER

different arithmetic, while the current trend is to employ
mod p-based cryptosystems (see Section I). Nevertheless,
one may note that the FPGA implementations of the
Tate pairing primitive use a wide portion of a somewhat
larger FPGA device. Moreover, while for processors is
it possible to obtain area estimates, the measurement of
the physical area of FPGA implementations is widely
dependent on CLB interconnection and pin layout. There-
fore, the CLB count of an FPGA implementation gives
no clue on the actual area occupied by the design. For
the proposed implementation, coprocessors are based on
a DSPFabric chip using a 7 mm2 die for 64 nodes, which
is a mean figure with respect to the range of possibilities
illustrated in the experimental evaluation.

A comparison can still be given with a high-end em-
bedded processor such as the 32-bit StrongARM, which
is reported to execute the same pairing computation in
over 60 million cycles [17] at 206 MHz, while an FPGA
implementation [33] requires about 6300 cycles at 15
MHz. The time × area optimum of our exploration
requires 1 million cycle, on a processor that can be
clocked up to 400 MHz. Our solution is, as expected,
midway between the pure software and pure hardware
solutions, though its performances position it nearer to
the hardware solution.

With respect to competitor technologies, tiled architec-
tures using the proposed methodology give the following
advantages: smooth scalability (tiled architectures provide
excellent scalability properties w.r.t. standard VLIW or
superscalar architectures) and quick development cycle
(almost as fast as software development).

VII. C ONCLUDING REMARKS

In this paper, we propose a novel programming model
for tiled architectures, suitable for computationally inten-
sive public key cryptographic algorithms. Our proposal
is supported by a case study on the DSPFabric reconfig-
urable architecture, focusing on the implementation of the
Tate pairing primitive. Results prove that large amounts of
parallelism can be exploited, yielding speedups of more
than one order of magnitude with respect to state of
the art software implementations. Finally, note that tiled
architectures have a rather contained power consumption
with a uniform distribution. Such feature is a competitive
edge w.r.t. FPGA implementations, which are known to
have poor performances from this point of view. As a
future development, the methodology developed in this
work could be fully automated, by designing a dedicated
programming language and its compiler tool-chain and
integrating the scheduling algorithm within the compiler
back-end.

ACKNOWLEDGMENT

The authors wish to thank Joël Cambonie of STMicro-
electronics for his help with the details of the DSPfabric
architecture.

REFERENCES

[1] B. Pfitzmann and M. Waidner, “Asymmetric fingerprinting
for larger collusions.” inACM Conference on Computer
and Communications Security, 1997, pp. 151–160.

[2] ——, “Anonymous fingerprinting.” inEUROCRYPT, 1997,
pp. 88–102.

[3] K. Kurosawa and Y. Desmedt, “Optimum traitor tracing
and asymmetric schemes.” inEUROCRYPT, 1998, pp.
145–157.

[4] A. Joux, “A one round protocol for tripartite diffie-
hellman,” inANTS-IV: Proceedings of the 4th International
Symposium on Algorithmic Number Theory. London, UK:
Springer-Verlag, 2000, pp. 385–394.

[5] D. Boneh and M. K. Franklin, “Identity-based encryption
from the weil pairing,” inCRYPTO ’01: Proceedings of
the 21st Annual International Cryptology Conference on
Advances in Cryptology. London, UK: Springer-Verlag,
2001, pp. 213–229.

[6] D. Boneh, B. Lynn, and H. Shacham, “Short signatures
from the weil pairing,” inASIACRYPT ’01: Proceedings of
the 7th International Conference on the Theory and Appli-
cation of Cryptology and Information Security. London,
UK: Springer-Verlag, 2001, pp. 514–532.

[7] A. Joux, “The weil and tate pairings as building blocks
for public key cryptosystems,” inANTS-V: Proceedings of
the 5th International Symposium on Algorithmic Number
Theory. London, UK: Springer-Verlag, 2002, pp. 20–32.

[8] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based crypto-
graphic protocols: A survey,” Cryptology ePrint Archive,
Report 2005/64, 2004.

[9] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott,
“Efficient algorithms for pairing-based cryptosystems,” in
CRYPTO ’02: Proceedings of the 22nd Annual Interna-
tional Cryptology Conference on Advances in Cryptology.
London, UK: Springer-Verlag, 2002, pp. 354–368.

[10] S. D. Galbraith, K. Harrison, and D. Soldera, “Implement-
ing the tate pairing,” inANTS-V: Proceedings of the 5th
International Symposium on Algorithmic Number Theory.
London, UK: Springer-Verlag, 2002, pp. 324–337.

[11] P. C. van Oorschot and M. J. Wiener, “Parallel collision
search with cryptanalytic applications,”Journal of Cryp-
tology, vol. 12, no. 1, pp. 1–28, March 1999, online Date
Thursday, February 19, 2004.

[12] D. Freeman, “Constructing pairing-friendly ellipticcurves
with embedding degree 10,” Cryptology ePrint Archive,
Report 2006/026, 2006.

[13] P. Barreto and M. Naehrig, “Pairing-friendly ellipticcurves
of prime order,” 2005.

[14] M. Scott, “Scaling security in pairing-based protocols,”
Cryptology ePrint Archive, Report 2005/139, 2005.

[15] M. Scott and P. S. L. M. Barreto, “Compressed pairings.”in
CRYPTO, ser. Lecture Notes in Computer Science, M. K.
Franklin, Ed., vol. 3152. Springer, 2004, pp. 140–156.

[16] V. Miller, “Short programs for functions on curve,” Unpub-
lished manuscript, 1986, avaliable at http://crypto.stanford.
edu/miller/miller.pdf.

[17] M. Scott, “Computing the tate pairing.” inCT-RSA, ser.
Lecture Notes in Computer Science, A. Menezes, Ed., vol.
3376. Springer, 2005, pp. 293–304.

[18] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota,
A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-
rasinghe, and A. Agarwal, “Evaluation of the raw mi-
croprocessor: An exposed-wire-delay architecture for ilp
and streams,” inISCA ’04: Proceedings of the 31st an-
nual international symposium on Computer architecture.
Washington, DC, USA: IEEE Computer Society, 2004,
p. 2.

58 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

[19] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“Wavescalar,” inMICRO 36: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microarchi-
tecture. Washington, DC, USA: IEEE Computer Society,
2003, p. 291.

[20] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDon-
ald, and C. R. Moore, “Trips: A polymorphous architecture
for exploiting ilp, tlp, and dlp,”ACM Trans. Archit. Code
Optim., vol. 1, no. 1, pp. 62–93, 2004.

[21] M. B. Taylor and W. Lee, “Scalar operand networks,”IEEE
Trans. Parallel Distrib. Syst., vol. 16, no. 2, pp. 145–162,
2005, member-Saman P. Amarasinghe and Member-Anant
Agarwal.

[22] J. Cambonie, “A hierarchical reconfigurable computer ar-
chitecture,” Patent.

[23] B. R. Rau, “Iterative modulo scheduling: an algorithm for
software pipelining loops,” inMICRO 27: Proceedings of
the 27th annual international symposium on Microarchi-
tecture. New York, NY, USA: ACM Press, 1994, pp.
63–74.

[24] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code
generation schema for modulo scheduled loops,” inMI-
CRO 25: Proceedings of the 25th annual international
symposium on Microarchitecture. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1992, pp. 158–169.

[25] G. Desoli, “Instruction Assignment for Clustered VLIW
DSP Compilers: A New Approach,” Hewlett-Packard Lab-
oratories, Tech. Rep. HPL-98-13, Feb 1998.

[26] M. M. Fernandes, J. Llosa, and N. Topham, “Distributed
modulo scheduling,” inHPCA ’99: Proceedings of the 5th
International Symposium on High Performance Computer
Architecture. Washington, DC, USA: IEEE Computer
Society, 1999, p. 130.

[27] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb,
V. Sarkar, and S. Amarasinghe, “Space-time scheduling
of instruction-level parallelism on a raw machine,” in
ASPLOS-VIII: Proceedings of the eighth international con-
ference on Architectural support for programming lan-
guages and operating systems. New York, NY, USA:
ACM Press, 1998, pp. 46–57.

[28] V. S. Lapinskii, M. F. Jacome, and G. A. D. Veciana,
“Cluster assignment for high-performance embedded vliw
processors,”ACM Trans. Des. Autom. Electron. Syst.,
vol. 7, no. 3, pp. 430–454, 2002.

[29] M. Chu, K. Fan, and S. Mahlke, “Region-based hierar-
chical operation partitioning for multicluster processors,”
in PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and imple-
mentation. New York, NY, USA: ACM Press, 2003, pp.
300–311.

[30] M. Scott, N. Costigan, and W. Abdulwahab, “Implement-
ing cryptographic pairings on smartcards,” Cryptology
ePrint Archive, Report 2006/144, 2006.

[31] S. Kwon, “Efficient tate pairing computation for elliptic
curves over binary fields.” inACISP, ser. Lecture Notes in
Computer Science, C. Boyd and J. M. G. Nieto, Eds., vol.
3574. Springer, 2005, pp. 134–145.

[32] P. S. L. M. Barreto, S. Galbraith, C. O. hEigeartaigh, and
M. Scott, “Efficient pairing computation on supersingu-
lar abelian varieties,” Cryptology ePrint Archive, Report
2004/375, 2004.

[33] T. Kerins, W. P. Marnane, E. M. Popovici, and P. S. L. M.
Barreto, “Efficient hardware for the tate pairing calculation
in characteristic three.” inCHES, ser. Lecture Notes in
Computer Science, J. R. Rao and B. Sunar, Eds., vol. 3659.
Springer, 2005, pp. 412–426.

[34] T. Kerins, E. M. Popovici, and W. P. Marnane, “Algo-
rithms and architectures for use in fpga implementations of
identity based encryption schemes.” inFPL, ser. Lecture

Notes in Computer Science, J. Becker, M. Platzner, and
S. Vernalde, Eds., vol. 3203. Springer, 2004, pp. 74–83.

[35] G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi,
“Parallel hardware architectures for the cryptographic tate
pairing.” in ITNG. IEEE Computer Society, 2006, pp.
186–191.

[36] X. Lai and J. L. Massey, “A proposal for a new block
encryption standard.” inEUROCRYPT, 1990, pp. 389–404.

[37] R. Ronan, C. O’Eigeartaigh, C. C. Murphy, M. Scott,
T. Kerins, and W. P. Marnane, “An embedded processor for
a pairing-based cryptosystem.” inITNG. IEEE Computer
Society, 2006, pp. 192–197.

[38] Third International Conference on Information Technol-
ogy: New Generations (ITNG 2006), 10-12 April 2006,
Las Vegas, Nevada, USA. IEEE Computer Society, 2006.

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 59

© 2007 ACADEMY PUBLISHER

