G. Agosta et al.

Code Transformation and Optimization

2018 Course Projects

G. Agosta, S. Cherubin, A. Di Federico, F. Terraneo

HERP

http://www.heaplab.deib.polimi.it

Code Transformation and Optimization 2018 Course Projects

OpenCL C Support

OpenCL on NU+ and PEAK ¢ Giovanni Agosta

OpenCL C

OpenCL C is (mostly) a restriction of C, with some extensions to support
the memory model of OpenCL, as well as specialized libraries.

In MANGO, we aim at supporting OpenCL on NU+ and PEAK, two
custom parallel architectures.

Project goals (one per project assigned)
@ Analyse and implement support for OpenCL C for NU+
@ Analyse and implement support for OpenCL C for PEAK

G. Agosta et al.

Code Transformation and Optimization 2018 Course Projects

GEOPM Extension

Automated generation of instrumentation ¢ Giovanni Agosta

Global Extensible Open Power Manager

GEOPM is a monitoring tool for HPC computing systems, that aims at
providing monitoring suitable for deployment on real HPC infrastructures.

Project goals

@ Develop a way to automatically generate the necessary
instrumentation at application, based on static analysis.

@ Determine the points in the code where notifications must be inserted.

@ Perform the insertion of calls to 1ibgeopm

v
References

@ https://geopm.github.io/
@ https://link.springer.com/content/pdf/10.1007/
978-3-319-58667-0_21.pdf

N

Code Transformation and Optimization 2018 Course Projects

G. Agosta et al.

https://geopm.github.io/
https://link.springer.com/content/pdf/10.1007/978-3-319-58667-0_21.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-58667-0_21.pdf

LLVM support for Miosix

Federico Terraneo

[dMiosSiX
Miosix is an OS kernel for microcontrollers

@ Currently targets ARM processors

@ Currently only works with GCC

@ To support thread-safety, requires patches to the compiler built-ins
library

v

Project goals

@ Compile the kernel using LLVM

e requires building LLVM for ARM with the correct C/C++ standard
library

@ Patch Ilvm to support thread-safety in Mioisx

§

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

Efficient Non-Standard Numeric System C++

Representations

Continued Fractions ¢ Stefano Cherubin

A continued fraction [a;; ap; a3; .. .] is an expression of the form:

1
a+——
a2 + az+...

v

Project goals

@ Implement a C++ library with operators to make its use convenient.

@ Use finite continued fractions to represent numbers.

e Evaluate their efficiency on a set of benchmarks (to be defined).

v
References

@ https://github.com/skeru/fixedpoint
@ https://crypto.stanford.edu/pbc/notes/contfrac/

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 4/ 16

https://github.com/skeru/fixedpoint
https://crypto.stanford.edu/pbc/notes/contfrac/

Efficient Non-Standard Numeric System C++

Representations
Logarithmic Number System ¢ Stefano Cherubin

The Logarithmic Number System (LNS) is a representation of real
numbers such that a number x is represented as {s(x), logs(|x|)}, where

s(x) =0 if x > 0, s(x) = 1 otherwise.

Project goals
@ Implement a C++ library with operators to make its use convenient.

@ Use floating point LNS to represent numbers.
o Evaluate their efficiency on a set of benchmarks (to be defined).

References
@ https://github.com/skeru/fixedpoint
@ http://coep.vlab.co.in/?sub=29&brch=88&sim=1353&cnt=1

Code Transformation and Optimization 2018 Course Projects

G. Agosta et al.

https://github.com/skeru/fixedpoint
http://coep.vlab.co.in/?sub=29&brch=88&sim=1353&cnt=1

Static Analysis

llvm-mca ¢ Stefano Cherubin

1lvm-mca and 11vm_sim are novel static performance analysis tools
implemented in LLVM.

Project goals

| A\

@ Apply static analysis to different versions of machine code to
understand which version can provide better performance.

@ Exploit 11vm-mca and 11lvm_sim on top of a compiler optimization
pass to measure possible benefit of the optimizations on different
architectures.

References

@ https://11lvm.org/docs/CommandGuide/llvm-mca.html
@ https://github.com/google/EXEgesis/tree/master/llvm_sim

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 6/ 16

https://llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/google/EXEgesis/tree/master/llvm_sim

Static Analysis

Value Range analysis ¢ Stefano Cherubin

Value Range Analysis aims at understanding through a data-flow analysis
approach the evolution of the computed values given the possible initial
ranges of the input data.

Project goals

@ Implement a value range analysis in LLVM to estimate the range of
actual values each variable can assume.

@ Apply this analysis to the problem of bit partitioning in fixed point
arithmetic.

@ Evaluation should be performed on approximate computing
benchmarks

References
@ http://axbench.org

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 7/ 16

http://axbench.org

Static Analysis

Approximate Computing Error Estimation ¢ Stefano Cherubin

Darulova & Kuncak propose a method for estimating the error imposed by
the use of a reduced precision data type for storage and computation.

Project goals

@ Implement the error estimation algorithm proposed in Section 5 of
their paper.

@ Evaluation should be performed on approximate computing
benchmarks.

v

References

@ E.Darulova,V.Kuncak, "TowardsacompilerforReals",doi:
10.1145/3014426

@ http://axbench.org

A

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

E. Darulova, V. Kuncak, "Towards a compiler for Reals", doi: 10.1145/3014426
E. Darulova, V. Kuncak, "Towards a compiler for Reals", doi: 10.1145/3014426
http://axbench.org

Static Binary Analysis with rev.ng

Binary diffing ¢ Alessandro Di Federico

Performing a diff between binaries is useful in general, and in particular for
plagiarism detection purposes.

Project goals

@ Build a robust algorithm working on LLVM IR recovered by rev.ng to
detect similar functions and assign a similarity score.

@ The starting point would be looking at how BinDiff works

v
References

@ https://rev.ng

@ https://www.zynamics.com/bindiff.html

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng
https://www.zynamics.com/bindiff.html

Static Binary Analysis with rev.ng

In place patching ¢ Alessandro Di Federico

Currently rev.ng takes a full binary, lifts it to LLVM IR and then recompiles
it fully.

Project goals

| A

@ Let the user choose only a subset of functions that they are interested
in modifying, let them change them (e.g., flip a condition, inject
tracing or whatnot) and then recompile exclusively that function and
patch it back in the original binary.

@ The project involves in particular LLVM's JIT engine.

References

@ https://rev.ng
@ https://1lvm.org/docs/tutorial/BuildingAJIT1.html

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng
https://llvm.org/docs/tutorial/BuildingAJIT1.html

Static Binary Analysis with rev.ng

QEMU as a binary lifter ¢ Alessandro Di Federico

A binary lifter is a piece of software that, given a buffer of bytes, it

interprets it as executable code and returns an IR. rev.ng provides such a
library based on QEMU.

Project goals

| N\

o Cleaning up the library, porting it to the most recent version of QEMU
and push to upstream our changes to the official QEMU project.

@ https://rev.ng

@ https://1lvm.org/docs/tutorial/BuildingAJIT1.html

.

G. Agosta et al.

Code Transformation and Optimization 2018 Course Projects

https://rev.ng
https://llvm.org/docs/tutorial/BuildingAJIT1.html

Static Binary Analysis with rev.ng

Analysis of local variables ¢ Alessandro Di Federico

When reverse engineering binary code, a key issue is the reconstruction of
automatic variables.

Project goals

| A\

@ Assuming the size of the stack frame of a function is known, divide it
in variables in a useful but conservative way.

@ In particular, recover the type (size, signedness, etc).

References

@ https://rev.ng

G. Agosta et al.

Code Transformation and Optimization 2018 Course Projects

https://rev.ng

Static Binary Analysis with rev.ng

CGEN Frontend ¢ Alessandro Di Federico

CGEN is a subproject of GCC which aims to make completely explicit the
behavior of the instruction of a certain architecture. J

Project goals

@ Translate each CGEN instruction to LLVM IR.

@ Use it as an alternate frontend to rev.ng.

v

References

@ https://rev.ng
@ https:
//github.com/embecosm/cgen/blob/master/cpu/cris.cpu

¢

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng
https://github.com/embecosm/cgen/blob/master/cpu/cris.cpu
https://github.com/embecosm/cgen/blob/master/cpu/cris.cpu

Static Binary Analysis with rev.ng

Extending loading capabilities ¢ Alessandro Di Federico

Currently rev.ng only supports static ELF binaries. J

Project goals

@ Implement the logic for loading dynamic ELF binaries; or

@ Implement the logic for loading other binary image formats, in
particular PE/COFF or Mach-O.

References

@ https://rev.ng
@ https://clearmind.me/presentations/linking.pdf

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng
https://clearmind.me/presentations/linking.pdf

Static Binary Analysis with rev.ng

Add support for more architectures ¢ Alessandro Di Federico

Currently rev.ng can only translate programs compiled for Linux for
ARM, MIPS and x86_64.

A,

Project goals (choose one!)

@ Add support and test functionality of one other architecture
supported by QEMU, in particular x86, AArch64 (ARM 64 bits),
RISC-V, OpenRISC, PPC and SPARC.

References
@ https://rev.ng

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng

Static Binary Analysis with rev.ng

Add support for more Operating Systems ¢ Alessandro Di Federico

Currently rev.ng can only translate programs compiled for Linux for
ARM, MIPS and x86_64.

.

Project goals (choose one!)

@ Complete the support for Linux: certain syscalls are not currently
supported by rev.ng. In particular support for multithreading would be
beneficial.

@ Add support for BSD-like operating systems: QEMU's user mode can
also emulate the BSD-kernel. This step consists in integrating it with
rev.ng.

References
@ https://rev.ng

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects

https://rev.ng

