
Code Transformation and Optimization
2018 Course Projects

G. Agosta, S. Cherubin, A. Di Federico, F. Terraneo

LAB

http://www.heaplab.deib.polimi.it

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 1/ 16

OpenCL C Support
OpenCL on NU+ and PEAK � Giovanni Agosta

OpenCL C

OpenCL C is (mostly) a restriction of C, with some extensions to support
the memory model of OpenCL, as well as specialized libraries.
In MANGO, we aim at supporting OpenCL on NU+ and PEAK, two
custom parallel architectures.

Project goals (one per project assigned)

Analyse and implement support for OpenCL C for NU+

Analyse and implement support for OpenCL C for PEAK

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 1/ 16

GEOPM Extension
Automated generation of instrumentation � Giovanni Agosta

Global Extensible Open Power Manager

GEOPM is a monitoring tool for HPC computing systems, that aims at
providing monitoring suitable for deployment on real HPC infrastructures.

Project goals

Develop a way to automatically generate the necessary
instrumentation at application, based on static analysis.

Determine the points in the code where notifications must be inserted.

Perform the insertion of calls to libgeopm

References

https://geopm.github.io/

https://link.springer.com/content/pdf/10.1007/

978-3-319-58667-0_21.pdf

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 2/ 16

https://geopm.github.io/
https://link.springer.com/content/pdf/10.1007/978-3-319-58667-0_21.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-58667-0_21.pdf

LLVM support for Miosix
Federico Terraneo

Miosix is an OS kernel for microcontrollers

Currently targets ARM processors

Currently only works with GCC

To support thread-safety, requires patches to the compiler built-ins
library

Project goals

Compile the kernel using LLVM

requires building LLVM for ARM with the correct C/C++ standard
library

Patch llvm to support thread-safety in Mioisx

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 3/ 16

Efficient Non-Standard Numeric System C++
Representations
Continued Fractions � Stefano Cherubin

A continued fraction [a1; a2; a3; . . .] is an expression of the form:

a1 +
1

a2 + 1
a3+...

Project goals

Implement a C++ library with operators to make its use convenient.

Use finite continued fractions to represent numbers.

Evaluate their efficiency on a set of benchmarks (to be defined).

References

https://github.com/skeru/fixedpoint

https://crypto.stanford.edu/pbc/notes/contfrac/

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 4/ 16

https://github.com/skeru/fixedpoint
https://crypto.stanford.edu/pbc/notes/contfrac/

Efficient Non-Standard Numeric System C++
Representations
Logarithmic Number System � Stefano Cherubin

The Logarithmic Number System (LNS) is a representation of real
numbers such that a number x is represented as {s(x), logb(|x |)}, where
s(x) = 0 if x > 0, s(x) = 1 otherwise.

Project goals

Implement a C++ library with operators to make its use convenient.

Use floating point LNS to represent numbers.

Evaluate their efficiency on a set of benchmarks (to be defined).

References

https://github.com/skeru/fixedpoint

http://coep.vlab.co.in/?sub=29&brch=88&sim=1353&cnt=1

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 5/ 16

https://github.com/skeru/fixedpoint
http://coep.vlab.co.in/?sub=29&brch=88&sim=1353&cnt=1

Static Analysis
llvm-mca � Stefano Cherubin

llvm-mca and llvm sim are novel static performance analysis tools
implemented in LLVM.

Project goals

Apply static analysis to different versions of machine code to
understand which version can provide better performance.

Exploit llvm-mca and llvm sim on top of a compiler optimization
pass to measure possible benefit of the optimizations on different
architectures.

References

https://llvm.org/docs/CommandGuide/llvm-mca.html

https://github.com/google/EXEgesis/tree/master/llvm_sim

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 6/ 16

https://llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/google/EXEgesis/tree/master/llvm_sim

Static Analysis
Value Range analysis � Stefano Cherubin

Value Range Analysis aims at understanding through a data-flow analysis
approach the evolution of the computed values given the possible initial
ranges of the input data.

Project goals

Implement a value range analysis in LLVM to estimate the range of
actual values each variable can assume.

Apply this analysis to the problem of bit partitioning in fixed point
arithmetic.

Evaluation should be performed on approximate computing
benchmarks

References

http://axbench.org

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 7/ 16

http://axbench.org

Static Analysis
Approximate Computing Error Estimation � Stefano Cherubin

Darulova & Kuncak propose a method for estimating the error imposed by
the use of a reduced precision data type for storage and computation.

Project goals

Implement the error estimation algorithm proposed in Section 5 of
their paper.

Evaluation should be performed on approximate computing
benchmarks.

References
E.Darulova,V.Kuncak,"TowardsacompilerforReals",doi:

10.1145/3014426

http://axbench.org

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 8/ 16

E. Darulova, V. Kuncak, "Towards a compiler for Reals", doi: 10.1145/3014426
E. Darulova, V. Kuncak, "Towards a compiler for Reals", doi: 10.1145/3014426
http://axbench.org

Static Binary Analysis with rev.ng
Binary diffing � Alessandro Di Federico

Performing a diff between binaries is useful in general, and in particular for
plagiarism detection purposes.

Project goals

Build a robust algorithm working on LLVM IR recovered by rev.ng to
detect similar functions and assign a similarity score.

The starting point would be looking at how BinDiff works

References

https://rev.ng

https://www.zynamics.com/bindiff.html

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 9/ 16

https://rev.ng
https://www.zynamics.com/bindiff.html

Static Binary Analysis with rev.ng
In place patching � Alessandro Di Federico

Currently rev.ng takes a full binary, lifts it to LLVM IR and then recompiles
it fully.

Project goals

Let the user choose only a subset of functions that they are interested
in modifying, let them change them (e.g., flip a condition, inject
tracing or whatnot) and then recompile exclusively that function and
patch it back in the original binary.

The project involves in particular LLVM’s JIT engine.

References

https://rev.ng

https://llvm.org/docs/tutorial/BuildingAJIT1.html

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 10/ 16

https://rev.ng
https://llvm.org/docs/tutorial/BuildingAJIT1.html

Static Binary Analysis with rev.ng
QEMU as a binary lifter � Alessandro Di Federico

A binary lifter is a piece of software that, given a buffer of bytes, it
interprets it as executable code and returns an IR. rev.ng provides such a
library based on QEMU.

Project goals

Cleaning up the library, porting it to the most recent version of QEMU
and push to upstream our changes to the official QEMU project.

References

https://rev.ng

https://llvm.org/docs/tutorial/BuildingAJIT1.html

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 11/ 16

https://rev.ng
https://llvm.org/docs/tutorial/BuildingAJIT1.html

Static Binary Analysis with rev.ng
Analysis of local variables � Alessandro Di Federico

When reverse engineering binary code, a key issue is the reconstruction of
automatic variables.

Project goals

Assuming the size of the stack frame of a function is known, divide it
in variables in a useful but conservative way.

In particular, recover the type (size, signedness, etc).

References

https://rev.ng

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 12/ 16

https://rev.ng

Static Binary Analysis with rev.ng
CGEN Frontend � Alessandro Di Federico

CGEN is a subproject of GCC which aims to make completely explicit the
behavior of the instruction of a certain architecture.

Project goals

Translate each CGEN instruction to LLVM IR.

Use it as an alternate frontend to rev.ng.

References

https://rev.ng

https:

//github.com/embecosm/cgen/blob/master/cpu/cris.cpu

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 13/ 16

https://rev.ng
https://github.com/embecosm/cgen/blob/master/cpu/cris.cpu
https://github.com/embecosm/cgen/blob/master/cpu/cris.cpu

Static Binary Analysis with rev.ng
Extending loading capabilities � Alessandro Di Federico

Currently rev.ng only supports static ELF binaries.

Project goals

Implement the logic for loading dynamic ELF binaries; or

Implement the logic for loading other binary image formats, in
particular PE/COFF or Mach-O.

References

https://rev.ng

https://clearmind.me/presentations/linking.pdf

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 14/ 16

https://rev.ng
https://clearmind.me/presentations/linking.pdf

Static Binary Analysis with rev.ng
Add support for more architectures � Alessandro Di Federico

Currently rev.ng can only translate programs compiled for Linux for
ARM, MIPS and x86 64.

Project goals (choose one!)

Add support and test functionality of one other architecture
supported by QEMU, in particular x86, AArch64 (ARM 64 bits),
RISC-V, OpenRISC, PPC and SPARC.

References

https://rev.ng

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 15/ 16

https://rev.ng

Static Binary Analysis with rev.ng
Add support for more Operating Systems � Alessandro Di Federico

Currently rev.ng can only translate programs compiled for Linux for
ARM, MIPS and x86 64.

Project goals (choose one!)

Complete the support for Linux: certain syscalls are not currently
supported by rev.ng. In particular support for multithreading would be
beneficial.

Add support for BSD-like operating systems: QEMU’s user mode can
also emulate the BSD-kernel. This step consists in integrating it with
rev.ng.

References

https://rev.ng

G. Agosta et al. Code Transformation and Optimization 2018 Course Projects 16/ 16

https://rev.ng

