Alessandro Barenghi
Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

May 11, 2011

Introduction

Recap

By now , you should be familiar with...
@ The UNIX local socket programming interface
@ TCP/IPv4 Socket programming

@ Daemons and Signals

Introduction

Lesson contents

o Datagram oriented protocol (UDP over IPv4)

o Communication over IPv6
o Raw UDP packet construction
@ ICMP ECHO responder, from scratch

Protocol

UDP

Overview

@ The User Datagram Protocol (UDP): connectionless protocol,
no ‘“session” concept

@ The transferred data unit is the datagram

@ No automatic retransmission in case of data loss or reception
ordering

@ Known, as a jest , as the Unreliable Datagram Protocol

Protocol

UDP

Applications

o Low latency communications: VolP, Video Streaming, NTP
Protocol

o Packet Broadcast: single message sent to all clients of a
network

o Single packet query-answer: DNS, DHCP,SNMP and RIP
@ Resource constrained conditions : Trivial FTP Protocol

Implementation

UDP

@ Socket creation is still managed by the same socket primitive

@ The only change is the use of SOCK_DGRAM as socket type

@ UDP is the result of the combination of SOCK_DGRAM with a
AF_INET or AF_INET6 domain

@ The binding to a socket in order to listen from it is still done
via a regular bind call

@ No need for connect or listen calls as there is no connection |

Implementation

UDP

Sending

Sending data on a UDP socket is managed by the sendto
primitive :

sendto(int sockfd, const void *buf, size_t len,
int flags, const struct sockaddr *dest_addr,
socklen_t addrlen);

@ Same first 3 parameters as the send primitive

@ The dest_addr parameter specifies the destination since no
concept of “session” is bound to the socket

Implementation

UDP

Analogously, the data are received via the recvfrom primitive :

recvfrom(int sockfd, void *buf, size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

@ Same first 3 parameters as the recv primitive

@ The src_addr parameter specifies source address of the
datagram to be read

@ Since there is no congestion control, messages from a sender
can be cluttered by the remaining unread traffic

Implementation

UDP

Issues

@ Collisions among clients : different clients with the same
ephemeral source port may clash

@ Data loss / reordering : due to network latencies, some
packets sent before may be delivered too late

@ Simple fix : introducing a trivial acknowledgement mechanism

@ Sorcerer’'s Apprentice Syndrome

TFTP

UDP

TFTP
@ The Trivial File Transfer Protocol is an UDP based file
transfer protocol

@ In order to provide minimal transfer warranties, it implements
a simple acknowledgement mechanism:

o The client sends a Read/Write ReQuest (RRQ/WRQ) to the
server port 69 to initiate the communication

o The server answers with the first data packet to the RRQ or
with an ACK to a WRQ from a fresh ephemeral port

o The client sends a numbered ACK in case of a RRQ session or
the first data packet to be written in case of an WRQ

o The server sends a numbered ACK for the first data to be
written or the second data packet after receiving the client
packet

UDP

TFTP

@ The TFTP protocol looks reasonably sound :

o All the data packets are ACKnowledged upon reception

o Packet n+ 1 cannot be received if packet n has not been
acknowledged

o The server side Ephemeral Port is freshly allocated by the
server (no collisions)

o It is in fact widely used for transferring the kernel of a system
performing a network based boot

@ So, why do we still use TCP based FTP? Can you see the
flaw?

Sorcerer's Apprentice Syn

@ The reception ordering invariant mandates that packet n + 1
cannot be received if packet n has not been acknowledged....

@ ... but there’s no mention on duplicates!
o What if :

o The server sends the n-th data packet

o The client sends the n-th acknowledgement, which gets
delayed by network issues

o The server times out and re-sends the n-th data packet

o The client re-acknowledges the reception....

@ Two duplicated “data streams” are created from a single one

@ UDP has no congestion control so the situation is bound to
get worse

IPv6

@ The 4th version of the Internet Protocol (IPv4) was conceived
standardized in 1981

@ At the time , 32 bits for the unique host identifier were
thought to be more than sufficient

@ Similarly, no mechanism for automatic address assignment
was conceived, and DHCP was later employed to compensate
the lack of it

@ The protocol was so well designed that it exceeded all its
usefulness expectations, until....

IPv6

@ The IPv4 address space was completely assigned (roughly a
pair of months ago)

@ The prime solution to this problem is represented by IPv6,
which is being pushed into adoption

@ The Linux kernel has a stable and well tested IPv6 suite
integrated and all the API are already in place

@ It is sufficient to switch the type of protocol of a common
AF_INET socket and set the addresses accordingly to get an
IPv4 program working on IPv6

Raw Sockets
.

Overview

Raw Sockets

@ Raw access to sockets allows full freedom in crafting any kind
of packet

@ Useful for debugging purposes and testing corner cases

@ Useful to implement a subset of a defined protocol in
constrained environments

@ Useful to check the correctness of packet filtering and
mangling tools

Raw Sockets
o

Overview

Raw Sockets

Overview

@ Raw sockets are just common sockets, employed while
disabling any further processing by the kernel

@ The data sent into a raw socket receives only Level 2
incapsulation and is then sent on Level 1

@ Due to the intrinsic flexibility of this mechanisms (filtering
policy overriding, IP spoofing...) only root is allowed to use
them

@ Since the portability of these sockets is an issue, it is strongly
advised to use fixed length and endianness data types from
C99

Raw Sockets
°

Implementation

Raw Sockets

How to use them

@ The socket is initialized with the SOCK_RAW socket type macro

o After the initialization, the kernel is notified not to rebuild the
IP header via setting the IP_HDRINCL via setsockopt

@ The packet is then crafted by hand by the developer

@ It is recommended also to correctly compute the header
checksum, even though the packet will be sent anyway

Raw Sockets

IP Raw header

Raw Sockets

IP Header

@ Reconstructing the IP header allows the spoofing of any field
of the header, source address included

@ Care should be taken to set correctly the three IP flags
(Reserved, DF and MF) since they are bit-packed before the
fragmentation offset

@ The checksum of the packet must be computed after the
whole packet has been put together

Raw Sockets

UDP Raw Header

Raw Sockets

UDP Header

@ In order to have a first example of packet crafting, we will be
building an UDP packet

@ The UDP header imposes only minimal overhead over the
common TCP header

@ Moreover, the checksum field is allowed to be set to zero
(except if the Level 3 protocol is IPv6)

