Alessandro Barenghi
Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

May 19, 2011

Introduction

Recap

By now , you should be familiar with...

@ Programming with sockets employing different protocols
@ System programming, synchronization primitives and IPC

@ System administration skills , as far as the local host and
network monitoring go

Introduction

Lesson contents

o Netfilter/Iptables Structure

@ Policy construction
@ Rules setting

@ Advanced matching

Netfilter/Iptables

Packet filtering

What's in a Firewall...

@ A firewall (or packet filter) is a toolkit deciding whether
packets passing from an host are to be kept or discarded

@ Structurally :
o Integrated with the network stack as much as possible
o Usually the packet filtering is in kernelspace, mainly due to
performance reasons
o Firewall management tools usually reside in userspace, due to

ease of use
@ We will examine the NetFilter (kernelspace) / Iptables
(userspace) packet filtering suite

Netfilter/Iptables

Packet filtering

Where?
The (main) firewall should be the single point of contact between

the secure and insecure zone

4
4
(]

/
i

WAN

Firewall

Figure: Firewall Placement

Netfilter/Iptables

Packet filtering

@ Avoiding unauthorized connections regardless of the
availability of a server

@ Packet sanitization (checksum check) can be performed
during filtering

o Stateful packet filtering also enforces observance of Level 3+
protocols

@ Network and Port Address translation strategies can be
employed by a packet-mangling firewall

Structure

Netfilter Structure

o NetFilter is a set of modules implementing filtering functions

@ The NetFilter structure is based on five hooks, placed on the
path of incoming/outgoing packets

@ The communication with the userspace management tools
happens via Netlink sockets

o Each of the five hooks executes a set of rule each time a
packet passes through it

Structure

Structure

Overview

—

[Routing
] NetFilter
[Lower Layers

Figure: NetFilter Structure

!
]
!

A4

Structure

Netfilter chains

Overview

@ A Netfilter chain is characterised by an ordered list of rules
which are triggered on a certain condition on the packet

@ If no rule matches the packet, the default action, i.e. the
chain policy is adopted

@ Up to four tables containing chains are present (filter,nat,
mangle and raw) for each Netfilter hook

o It is possible to create custom chains of rules in order to avoid
the crowding of the default chain

@ There is no possibility to add hook structures by default
(obviously, you can write an extra module :))

Management

Hook policies

Setting the defaults

@ Every builtin chain has a default policy, i.e. a default action to
be performed on the packet
o ACCEPT: the packet flows through the hook, towards its
destination
o QUEUE: the packet is sent to the userspace via Netlink for
examination

o DROP: the packet is discarded and treated as it never existed
@ A hook policy can be set up with iptables -P <chain>
<policy>
@ The default policy, with which the kernel boots Netfilter is
ACCEPT for all the base chains

Management

Hook policies

Reasonable policies

@ Reasonable policies usually are :

o PRE/POSTROUTING: set to ACCEPT, these chains are not meant
for dropping

o INPUT: set to DROP, whitelist is better than blacklist

o FORWARD: set to DROP, “Thou shall not pass” is a reasonable
default for the same reasons

o OUTPUT: set to ACCEPT, although particularly restrictive
policies may need a DROP

Management

Rules - management

Rule structure

@ The Netfilter behaviour is modified via the iptables
command

@ A rule is composed of two parts, the match and the target

@ The match specifies the conditions regarding the packet which
will trigger the rule

@ The target specifies the fate of the packet

@ For basically all match specifications , prepending a ! mark
inverts the match

Management

Rules - management

@ Possible targets (with extensions) for a rule are :

o ACCEPT/DROP : behave exactly as the policies

o REJECT: The packet is dropped but, if allowed by the protocol,
the sender is notified of the rejection

o LOG: A line in the kernel log is written, and the check on the
chain of rules goes on

o MIRROR: Swaps source and destination address and
immediately sends the packets without passing via the other
chains

o RATEEST: adds this packet to the statistic of a rate estimator,
then the chain checks go on

Management

Rules - management

Rule management

@ The generic iptables command is structured as : iptables
[-t table] <action> <rule>

@ Possible actions are :

o —-A <chain> : appends a rule at the end of the chain

o -D <chain> : deletes the specific rule (the number of the
rule may be indicated instead)

-I <chain> <num>: inserts the rule as the n-th

-R <chain> <num>: replaces the n-th rule

-L: lists all the rules of a chain

~F: flushes a chain (but does not reset the policy to ACCEPT)

v

Management

Rules - 1

Matching interfaces

@ The first and most simple match for a packet is to decide an
action depending on the interface it was received on

@ The inbound/outbound interface matches are specified via the
-i <iface>/-o <iface> option
@ The -i/-o options are limited to some chains, namely:
@ -1 can only be used in INPUT, FORWARD and PREROUTING
e -1 can only be used in OUTPUT, FORWARD and POSTROUTING
@ The most common use of this match is to differentiate the
reasonably trusted zone of the network (LAN side) from the
really untrusted side (WAN side)

Management

Rules - 1

Matching interfaces - 2

@ A special case for interface matching is the loopback interface
1o

@ This interface should never be filtered, lest a couple of
applications will misbehave

@ Accepting all packets with destination address equal to
127.0.0.1 is not equivalent to accepting lo (See RFC3330)

@ Accepting all packets with destination address equal to
127.0.0.0/8 is not equivalent to accepting lo either (packets
directed to an address you own are routed to 1o when you self
connect)

4

Management

Rules - 2

Matching Addresses and ports

@ The most common match is the one checking either the
source —-s or the destination -d address

o It is possible to specify the mask as the number of contiguous
ones /n or explicitly /a.b.c.d

o If the rule does not specify any mask, the default is /32, i.e.
host only

@ Also non contiguous masks are usable: e.g. 255.255.255.249
(OxFFFFFFF9) matches all the odd hosts up to .7

@ Employing non contiguous masks may help in reducing the
number of rules

Management

Rules - 2

Matching Addresses

@ The most common match is the one checking either the
source —-s or the destination -d address

o It is possible to specify the mask as the number of contiguous
ones /n or explicitly /a.b.c.d

o If the rule does not specify any mask, the default is /32, i.e.
host only

@ Also non contiguous masks are usable: e.g. 255.255.255.249
(OxFFFFFFF9) matches all the odd hosts up to .7

@ Employing non contiguous masks may help in reducing the
number of rules

Management

Rules - 3

Matching protocols

@ After matching the address, the next most simple match is
the one on the L4 protocol

@ The -p [tcpludpludplitelicmplesplah|sctplalll
option specifies the protocol to be matched

@ Take care in not filtering fundamental ICMP messages, f.i.
Type 3 (Destination Unreachable)

o Filtering non fundamental-but-useful messages (traceroute,
echo/echo reply) is widely considered a brain damage unless
specific reasons are in place

Management

Rules - 4

Matching Ports

@ The in addition to the source/destination address, also port
matching is allowed via the ——sports/--dports

@ Both options allow to match a set of comma-separated ports
(e.g. ——dport 22,80)

@ If the ports to be matched are contiguous, the range :
operator can be used (e.g. ——dport 6881:6890)

@ The —--sports/--dports need the —p option to be explicitly
specified and to be matching either UDP or TCP

Management

Rules - 5

Matching connection status

@ The difference from a regular and a stateful packet filter
resides in the ability to filter according to the connection
status

@ The -m state --state <conn_state> match allows to
specify the status of the connection (for connection oriented
protocols)

@ Possible statuses are :

o NEW : The packet beginning a connection (f.i. TCP/SYN)

o ESTABLISHED : The packet is part of a connection flow

o RELATED : The packet belongs to a related connection (f.i.
active FTP mode)

o INVALID : The packet does cannot be part of a valid
connection (TCP SYN/FIN packets)

o UNTRACKED : The packet is not being tracked

Management

Rules - 6

@ Sometimes it is desirable to limit the bandwidth for a specific
class of connections

@ The -m limit <times/s> match allows to send to the rule
target only a specific amount of connections

@ The -m recent --set option tags a connection as one of a
set of recently happened ones

@ The -m recent --<time> <n> --hitcount option allows
to send to a target all the connections exceeding the
hitcount/time

o Notice that rate limiting does not in any way limit the
bandwidth of the single connection

Management

Configuration Management

Saving and Restoring

@ The iptables utility updates a rule at a time via Netlink

@ In case multiple rule changes should be performed atomically
it is not a good idea to call it a volley of times

@ The iptables-apply is able to insert atomically the changes
in the Netfilter tables

@ The iptables-save and iptables-restore command
provide a way of dumping and restoring a full ruleset at once

@ There is also an iptables-xml utility which converts a
ruleset in XML for whatever purposes it may have

	Introduction
	Netfilter/Iptables
	Structure
	Management

