
Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Kernel Module Programming

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

May 26, 2011

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Recap

By now , you should be familiar with...

Programming with sockets employing different protocols

System programming, synchronization primitives and IPC

System administration skills , as far as the local host and
network monitoring go

Network administration and filtering, tunnels and NAT

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Lesson contents

Overview

Linux kernel structure (brief)

Kernel Modules programming

Simple kernel module

A proc entry

A sample character device

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Linux

A bit of history

The Linux kernel development started back in 1991

The first release was developed to have a working, simple OS,
no strings attached

In 20yrs, the codebase has grown from 140k LOC to 14M LOC

At the moment, the most used monolithic kernel around

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Macrokernel

Monolith and modules

The Linux kernel is based on a monolithic structure and is
fully written in Ca

All the code thus shares the same namespace and memory

The whole code runs with the highest possible privileges on
the CPU (the so-called supervisor mode)

Simple, performing but with some safety issues (concurrency
handling)

Microkernel alternatives have a different structure, but
choosing one or the other strategy is a long standing issue

aplus some assembly for the syscalls/drivers backend obviously

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Macrokernel

Key areas

The Linux kernel is logically split in 6 master areas

System management : bootup, shutdown, syscall interfaces
Process management : scheduling, inner locks and mutexes,
synchronization primitives
Memory management : Memory allocator, page handler,
virtual memory mapper
Storage management : file access primitives, virtual filesystem
management, logic filesystem management and disk handling
Networking management : network syscalls, socket bufffer
handling, protocol and filtering handling, network drivers
User Interaction management : character devices, security
management, process tracing management and HI devices
management

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Module structure

What’s in a module

A kernel module is a binary blob, which can be linked at
insertion time with the whole kernel

Think of it as a sort of a “strange” static library

The linking is performed only against kernel symbols: no libc
around here...

Particular care should be exercised before calling kernel
symbols prefixed by a double underscore, as they represent
lower level functions

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Module structure

Differences from processes

The module is not “run” but rather called when its services
are needed (similar to event based programming)

There is no regular dynamic memory allocator, as we are
directly on the fence side where physical memory can be
accessed

There is no automatic cleanup when a module is removed,
noone will free memory, noone will rebind the things as they
were before

Albeit there is a concept of “running” process, it is almost
impossible to understand what calls you

No floating point operations available, sorry

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

A simple module

Contents

A module is constituted of one (or more) C files, containing a
collection of functions

Two functions are mandatory

init module performs all the initializations of the resources at
insertion time
cleanup module performs the pre-removal cleanup

All the variables declared in the global scope of the module
are actually residing in kernel memory

The stack of the module is shared with all the others kernel
functions (i.e. the kernel has a single stack) and it’s rather
small

Dynamic memory allocation encouraged for large variables as
they would clutter the stack

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

A simple module

Building

In order to build a module,you just need the usual gcc
compiler

To specify that a kernel module object must be built, the
obj-m target is used in the Makefile

You will need at least the Linux kernel header files to compile
a modulea

If you are planning to do heavy modificationsb, a full kernel
source tree will be required

aavailable as a handy package under Debian
bsay, adding syscalls

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

A simple module

Module Management

Once a module has been successfully built, you can check
informations about it via the modinfo command

Module insertion is performed via the insmod command,
while removal is done via rmmod

You can obtain a list of the inserted modules via the lsmod

command

It is pretty obvious that only root can insert and remove
kernel modules

The kernel ring buffer (where log messages appear) can be
accessed via the dmesg command

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

A simple module

Licensing and Author

Every module has an author (to be blamed or praised) and is
released under a specific license

Beside the purely legal issues, module licensing affects the
behaviour of the kernel at insertion time

It is commonly said (and tools will report so) that a non
GPL-licensed module will “taint” the kernel

In particular, as the non GPL modules may not be available
for source code inspection some debugging facilities may be
disabled

Moreover, bug and compatibility issues with tainting modules
are dealt less readily by the kernel development team

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

A simple module

Parameter passing

It is possible to pass parameters to a module at insertion time

The parameter parsing is done according to the call to the
module param primitive

The module param primitive accepts the name of the
parameter, the type and the permission for changing it, if it
will be exposed via sysfs

It is possible also to pass arrays as parameters via the
module param array function

The module param array behaves in a similar way to the
argc-argv mechanism in userspace programs

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Dynamic Memory allocation

kmalloc

The most simple way to get dynamic memory in kernelspace is
the use of the kmalloc primitive

The primitive directly calls the get free pages function
appropriately, so space is available only in page sized chunks

There is an upper limit for the maximum size of a kmalloc:
portable code should not use more than 128kB per shot

The kmalloc primitive can be invoked with different flags to
steer the behaviour of the memory allocator, in particular

GFP KERNEL is the default behaviour flag, may block and put
to sleep the current process
GFP ATOMIC is specifies that the current process should not be
put to sleep and can claim up to the last page available

kfree frees the memory claimed with kmalloc

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Dynamic Memory allocation

vmalloc

If you are not in need of physically contiguous memory, you
may use the vmalloc primitive

The vmalloc calls the page handler at a higher level resulting
in an allocation of an arbitrarily large amount of memory

Since the call depth is greater than kmalloc, vmalloc is
obviously less performing that kmalloc

As before, you can (and must)free the memory via vfree

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Concurrency handling

Concurrency issues

As we now know, the Linux kernel is one large monolith as far
as the running code goes with the same address space
accessible for all the modules

Once upon a long time ago, when the systems had a single
processor and the kernel structure was simpler, only one task
would have been executed at once in kernelspace

Still , hardware interrupts could get in the way of atomic
operations being performed

Then multiprocessor system started being supported back in
1996, starting to cause the first, serious concurrency issues

The whole thing got a lot worse when the whole kernel
became preemptible with the 2.6 series (around mid 2002 with
2.5.37)

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Concurrency issues

Solutions available

As the concurrency issues are pretty serious, the kernel offers
native facilities to prevent problems

Fully atomic variables are available

Semaphore-structures were implemented since a long time ago

Spinlocks represent the main difference between userspace and
kernelspace concurrency handling mechanisms (used most of
the time)

Read-Copy-Update mechanisms are available to provide
advanced and performant concurrency handling (especially
useful for NetFilter)

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Concurrency issues

Atomic Variables

In case the resource which may be shared among different
kernel parts is a simple integer

In this case, it is possible to avoid complex concurrency
handling structures via the use of atomic variables

The atomic [set|add|inc|dec|sub] provide the means to
atomically perform that operation on the integer value

Operations on atomic variables are usually extremely fast, as
they are compiled as single assembly instructions if the
architecture allows so

A companion primitive set is the atomic * and test group
which check if the operation was correctly performed
afterwards and are useful to implement election mechanisms

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Concurrency issues

Spinlocks

Spinlocks are mutual exclusion primitives akin to common
mutexes

The main difference is that a spinlock will never be put to
sleep until it gains access to the resource

Spinlocks are structures of spinlock t type (defined in
spinlock.h)

Different locking and unlocking functions are available

spin lock and spin unlock are the garden variety spinlock
spin lock irqsave and spin unlock irqsave will mask
hardware interrupts and restore the IV state after the lock has
been resolved
spin lock bh and spin unlock bh only mask software
interrupts

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Communications with the real world

Devices

In order to expose a unified interface for communication with
the hardware, the kernel exposes devices

Following the UNIX philosophy, the devices are seen in
userspace as simple files

It is possible to either expose a real device via a
block/character interface (e.g. /dev/sda)

Or to build a mockup device which may be useful (/dev/zero)

A simpler alternative, if there is only the need to communicate
between userspace and kernelspace is the proc filesystem

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Communications with the real world

Creating proc entry

The proc filesystem is a mockup filesystem with no structures
whatsoever on any permanent storage device

A proc filesystem entry does not need to have a full and
proper device structure

The only two operations which are mandatory to implement
are read and write

The proc filesystem takes care of handling the open/close/stat
syscalls properly and only requires the “filling” for the buffers

The file is automatically created in the /proc directory and
does not need to be physically removed from the filesystem
(as there’s no actual fs :))

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Communications with the real world

A real device

A real character device needs to implement all the possible
operations which can be performed on it

Moreover, it is required to handle the number of stakeholders
which are actually using the device to avoid improper removal
of the module

The devices are accessible from the userspace via a peculiar
filesystem entry, which does not have any actual space
reserved on disk known as device node

Real devices are split into :

Character devices: minimum unit for access : char, usually
unbuffered
Block devices: minimum unit for access : block, usually
buffered

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Communications with the real world

Device implementation

We will see the implementation of a mockup character devicea

A character device needs to implement at least four key
primitives : open,read,write and release

It also needs to take into account whether someone is using
the device in order to prevent premature module removal

The transferral of the data from kernel to user address space
is managed by the put user primitive

aBlock devices go the same way, just with more functionalities

Introduction Kernel Structure Kernel Modules vs Processes A Simple Module Concurrency handling Character Devices

Communications with the real world

Node setup

A device node can be created via the mknod utility and needs
three parameters

The type of the device (block or character device)
The major number, i.e. a unique, kernel assigned, identifier for
the device
The minor number, a sub-index handled by the module
answering for that device in kernelspace

A list of all the devices exported by the kernel is available via
/proc/devices

It is possible also to avoid static devices via the udev
filesystem, which is automatically populated by the kernela

asay, the partitions of a hard disk

	Introduction
	Kernel Structure
	Kernel Modules vs Processes
	A Simple Module
	Concurrency handling
	Character Devices

