The POSIX Socket API

Giovanni Agosta

Piattaforme Software per la Rete — Modulo 2

G. Agosta The POSIX Socket API

Outline

@ Sockets & TCP Connections
© Socket API
© UNIX-domain Sockets

@ TCP Sockets

G. Agosta The POSIX Socket API

Sockets & TCP Connections

TCP Connections

Preliminaries

TCP Application Interfaces

@ Loosely specified
e Multiple implementations (Berkeley Sockets, System V TLI)
@ Finally, POSIX socket API

POSIX Sockets API

@ (Mostly) Unix networking interface abstraction

@ Bidirection communication device
@ Allows many different underlying protocols (not just TCP)

@ Also abstracts inter process communication (IPC)

G. Agosta The POSIX Socket API

Sockets & TCP Connections

Socket Concepts

Communication style

o Data is sent in packets
@ Communications style determines packet handling and
addressing

Communication styles

@ Connection (Stream and sequential sockets)

e In-order delivery
o Automatic request for retrasmission of lost/reordered packets

@ Reliably Delivered Messages

e No in-order delivery guarantee

e Automatic request for retrasmission of lost packets
e Datagram

e No in-order delivery guarantee
e Actually, no delivery guaranty at all

G. Agosta The POSIX Socket API

Sockets & TCP Connections

Socket Concepts

Namespaces & Protocols

Namespaces

Define how socket addresses are written
@ Local namespace
o Socket addresses are filenames
@ Internet namespace

o Socket addresses are IP addresses plus port numbers
e Port numbers allow multiple sockets on the same host

Protocols

Specify the underlying protocol for transmitting data

@ IP protocol family
@ IP version 6

@ UNIX local communication

G. Agosta The POSIX Socket API

Sockets & TCP Connections

Socket Concepts

Protocol-Style Combinations

Protocol | Style
SOCK_STREAM | SOCK DGRAM | SOCK RAW | SOCK RDM | SOCK_SEQPACKET
PF_LOCAL 1 t
PF_INET TCP UDP IPv4
PF_INET6 TCP UDP IPv6
PF_NETLINK t t
PF_X25 t
PF_APPLETALK i i
PF_PACKET t 1
tValid combination, with no special name)

G. Agosta The POSIX Socket API

Socket API

Socket API

Socket Representation and System Calls

Representation
o File descriptors are employed to represent sockets

@ Once communication is established, POSIX 1/0O calls are used

System Calls

socket Creates a socket

close Destroys a socket

connect Creates a connection between two sockets
bind Labels a server socket with an address
listen Configures a socket to accept conditions

accept Accepts a connection and creates a new socket for
the connection

G. Agosta The POSIX Socket API

Socket API

Socket API

socket

#include <sys/socket.h> int socket(int domain, int
type, int protocol)

o Creates a socket (data structure in the file table)

@ Takes three parameters
domain Socket domain (protocol family, e.g., PF_LOCAL,
PF_INET)
type Socket type (communication style)
protocol Protocol (generally implicit)
@ Returns a file descriptor (positive integer) if successful, -1
otherwise

G. Agosta The POSIX Socket API

Socket API

Socket API

close

Prototype
#include <unistd.h> int close(int f)

Operation

@ Closes the socket

@ Actually, since it is a file descriptor, this is just the usual
close call

@ Returns 0 if successful

G. Agosta The POSIX Socket API

Socket API

Socket API

connect

Prototype

#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr
*gserv_addr, socklen_t addrlen);

Operation

@ Connects the socked sockfd to the specified (remote) address
@ addrlen is an integer (size of the sockaddr structure)

@ Connectionless sockets can use connect multiple times, to
change the associated address

G. Agosta The POSIX Socket API

Socket API

Socket API

bind

Prototype

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

Operation

@ Assigns a local address to the socket
@ Necessary to make a socket visible outside the process
@ The sockaddr structure depends on the address family

@ Returns 0 if successful, -1 otherwise

G. Agosta The POSIX Socket API

Socket API

Socket API

listen

Prototype

#include <sys/socket.h>
int listen(int sockfd, int backlog);

@ Marks the socket as passive

@ The socket must use the SOCK_STREAM or SOCK_SEQPACKET
styles

@ It will then be used to accept incoming connections

@ backlog is the maximum length of the pending connections
queue

@ Returns 0 if successful, -1 otherwise

G. Agosta The POSIX Socket API

Socket API

Socket API

accept

Prototype

#include <sys/socket.h>
int accept(int sockfd, struct sockaddr *addr,
socklen_t *addrlen) ;

@ Used in passive connection-based sockets

@ addr is filled with the peer socket address

@ addrlen initially contains the size of addr in memory,
replaced with the actual size

@ Returns the file descriptor (positive integer) for the accepted
socket if successful, -1 otherwise

G. Agosta The POSIX Socket API

Socket API

Socket Address

Generic data structure

@ Addresses differ for the various protocols
@ Different structures must be used

@ Sockets are rather old (1982), and a non-ANSI C workaround
was used instead of void *

The sockaddr structure

struct sockaddr {
sa_family_t sa_family ; /¥ AF_xxx x/
char sa_data [14]; /x address x/

G. Agosta The POSIX Socket API

Socket API

Socket Address

Data types for sockaddr structures

| Type | Description | Header \
int8_t signed 8 bit integer sys/texttts.h
uint8_t unsigned 8 bit integer sys/texttts.h
int16_t signed 16 bit integer sys/texttts.h
uintl6_t unsigned 16 bit integer sys/texttts.h
int32_t signed 32 bit integer sys/texttts.h
uint32_t unsigned 32 bit integer sys/texttts.h
sa_family_t | address family sys/socket.h
socklen_t address struct length (uint32_t) | sys/socket.h
in_addr_t IPv4 address (uint32_t) netinet/in.h
in_port_t TCP or UDP port (uint16_t) netinet/in.h

G. Agosta The POSIX Socket API

UNIX-domain Sockets

Local Sockets
Using Sockets as IPC

@ Provide communication between programs/processes

@ Use the same socket abstraction

How to use local/UNIX sockets

Namespace: PF_LOCAL or PF_UNIX

Use the struct sockaddr_un

The filename must be up to 108 bytes

The actual length is computed using SUN_LEN

G. Agosta The POSIX Socket API

UNIX-domain Sockets

Local /UNIX Socket Address

The sockaddr structures

#define UNIX_.PATH_-MAX 108

struct sockaddr_un {
/x AF_UNIX x/
sa_family_t sun_family;
/* pathname x/
char sun_path [UNIX_.PATH_MAX];

@ sun_family = AF_LOCAL or sun_family = AF_UNIX

@ sun_path must be a file pathname

G. Agosta The POSIX Socket API

TCP Sockets

TCP Sockets

Generalities

@ Connection-based socket
@ Two sockets are involved, with different roles

o One socket (server) accept the connection
o The other socket (client) establishes the connection

@ The client needs to know the server in advance, but not vice

Versa

G. Agosta The POSIX Socket API

TCP Sockets

TCP Connections
Three Way Handshake

\ client [TCP | | TCP || server
socke CLOSED CLOSED socket
bind
(blocks) connectt listen
active open passive open
SYN_SENT SYN i accept (blocks)
LISTEN
SYN_RCVD
SYN CK j+1
(return) connectg
ESTABLISHEIQ
ACK k+1
——— _ | KLaccept (return)
ESTABLISHEET

G. Agosta The POSIX Socket API

TCP Sockets

IPv4 Socket Address

The sockaddr structures

struct sockaddr_in {
/x address family: AF_INET x/

sa_family_t sin_family ;
/% port in network byte order (big—endian) %/
in_port_t sin_port;

/* internet address x/
struct in_addr sin_addr;
/+ Internet address. x/
struct in_addr {
/+ address in network byte order x/
in_addr_t s_addr;

TCP Sockets

TCP Connections

Well-known ports

e TCP (and UDP) define well-known ports
@ Well-known ports are assigned numbers from 0 to 1023

@ The remaiing ports are divided in registered (up to 49151)
and dynamic (up to 65535)

@ In Linux and BSD, well-known ports are reserved to processes
with administration rights (only root can start the ssh server,
e.g.)

@ Also, ports 1024—4999 and 61000-65535 are used as
ephemeral ports (i.e., for client sockets)

G. Agosta The POSIX Socket API

	Sockets & TCP Connections
	Socket API
	UNIX-domain Sockets
	TCP Sockets

