
Syntax

The study of the rules whereby words
or other elements of sentence
structure are combined to form
grammatical sentences.

The American Heritage Dictionary

Syntactic analysis

• The purpose of the syntactic analysis is to
determine the structure of the input text;

• The syntactic structure is defined by a
grammar.

(Number 4) (Operator +) (Number 12) (Operator /) (Number 3)

Operator
+

Number 3Number 6

Number 4
Operator

/

Lexical Analysis

Syntactic Analysis

4+12/3

Example of syntactic analysis

Semantic analysis

It is the evaluation of the meaning of each (terminal and
non-terminal) symbol, achieved by evaluating the
semantic attributes either in ascending or descending
order.

Operator
+

Number, 3Number, 6

Number,4
Operator

/

value=6

value=2

value=3value=6

value=4

What is a parser

• A parser is a program that performs syntactic
analysis.

• It can typically be:
– LL (left to right-leftmost); or
– LR (left to right-rightmost).

• LL parsers can be constructed by hand or
automatically.

• LR parsers are usually too complex to be
constructed manually.

bison: a parser generator
• bison is a free implementation of yacc (originally by

AT&T) that comes standard with most Unix distributions;
yacc is the absolute standard compiler compiler;

• Learn more on bison at the following address:
www.gnu.org/software/flex/flex.html

• bison is free, and distributed under the terms of GNU
General Public License (GPL).

• A useful book to understand bison is:
John Levine, Tony Mason & Doug Brown
lex & yacc, 2nd Edition
O’Reilly

Designing a parser
with bison and flex

bison

Grammar description
(name.y file)

Parser C source code
(file name.tab.c)

gcc

Parser executableInput stream Desired
output

Scanner C source code
(file lex.yy.c)

flex

Scanner description
(name.l file)

5 easy steps to build a parser

• Specify the tokenizer in flex format.
• Specify the grammar in bison format.
• Write the desired semantic actions

associated to each syntax rule.
• Write the controlling function.
• Write the error-reporting function.

The format of bison grammars

%{
C definitions

%}
bison definitions

%%
Grammar Rules

%%
C user code

Comments enclosed in /* */ may appear in any of the sections.

A first example

A Reverse Polish Notation calculator.
Grammar Rules:
S S E | epsilon
E number
E E E + | E E - | E E * | E E / | E E ^ | E n

An RPN Calculator in bison

%{
#define YYSTYPE double
#include <math.h>
%}

%token NUM
%token OP_PLUS
%token OP_MINUS
%token OP_MUL
%token OP_DIV
%token OP_EXP
%token UN_MINUS
%token NEWLINE

%%

input: /* empty */
| input line
;

line: NEWLINE
| exp NEWLINE { printf ("\t%.10g\n", $1); }
;

exp: NUM { $$ = $1; }
| exp exp OP_PLUS { $$ = $1 + $2;}
| exp exp OP_MINUS { $$ = $1 - $2;}
| exp exp OP_MUL { $$ = $1 * $2;}
| exp exp OP_DIV { $$ = $1 / $2;}
/* Exponentiation */
| exp exp OP_EXP { $$ = pow ($1, $2);}
/* Unary minus */
| exp UN_MINUS { $$ = -$1; }
;

%%

int yyerror(char * s){
printf("%s\n",s);

}

int main(){
yyparse();

}

Definitions Grammar Rules

Driver and
error routines

Bison definitions
and grammar rules

• Hot to define a token (a terminal symbol):
%token TOKEN_NAME

• How to define a grammar rule:
S : A1 … An { semantic action }
| B1 … Bm { semantic action }
;

• How semantic actions are specified, and values treated:
– The semantic value of the non-terminal in the left-hand side of

the production is referred as $$
– The semantic values of the symbols in the right-hand side are

referred as $1……$n
– The default semantic action is { $$ = $1; }

How the generated parser works

The current look-ahead
symbol (LA) is pushed on
top of the stack.

LA

Shift

A
B C

Symbols constituting the right-hand side
of a rule (in reverse order) are
recognized. They are popped, and the
corresponding left-hand side is pushed.

Read
token

Look up
table

Shift or
reduce?

Shift

Reduce

Reduce

rule:
C : B A ;

The trace of a parser execution

• Input tokens: 2 + 3
• LA = 2
• Shift
• LA = +
• Shift
• LA = 3
• Shift
• LA = <end of input>
• Reduce
• Stop

Stack States

2

Ax

+

2

2

+

3

Integration with flex

• Compile the parser source with –d option.
• bison outputs a file named name.tab.h,

which contains the token definitions and the type
definition for return values.

• The above file should be included in the flex
input; YYSTYPE should be defined (the type of
tokens’ semantic values).

• The lexical actions must store the semantic value
of each token in the global yylval variable
(declared in generated header file).

Example of integration

#ifndef YYSTYPE
#define YYSTYPE int
#endif

#define NUM 257
#define OP_PLUS 258
#define OP_MINUS 259
#define OP_MUL 260
#define OP_DIV 261
#define OP_EXP 262
#define UN_MINUS 263
#define NEWLINE 264

extern YYSTYPE yylval;

%{
#define YYSTYPE double
#include "rpn.tab.h"
#include <stdlib.h>
%}
%option noyywrap
DIGIT [0-9]
BLANKS [\t]
%%
{BLANKS}+
"+" return OP_PLUS;
"-" return OP_MINUS;
"/" return OP_DIV;
"*" return OP_MUL;
"^" return OP_EXP;
"n" return UN_MINUS;
"\n" return NEWLINE;
{DIGIT}+ |
{DIGIT}*"."{DIGIT}+ { yylval=atof(yytext);

return NUM;}

rpn.tab.h rpn.lex

An infix notation calculator

• Grammar rules:
S (S)S | S+S | S-S | S*S | S/S | S^S | -S
S number

• This grammar is ambiguous: there are sentences
which can be derived in multiple ways, e.g.
2+2*2.

2 2

2+

*

2

2 2

+

*

How to resolve ambiguity

• Either rewrite the grammar in a non-
ambiguous form:
S S + E | S – E | E
E E / M | E * M | M
M T ^ M | - T | T
T number | (S)

• or use operator precedence declarations
provided by bison

Infix notation calculator in bison

%{
#define YYSTYPE double
#include <math.h>
%}
%token NUM
%token LP
%token RP
%token NEWLINE

/* operator precedence */
%left OP_PLUS OP_MINUS
%left OP_MUL OP_DIV
%left NEG
%right OP_EXP
%%

input: /* empty */
| input line
;

line: NEWLINE
| exp NEWLINE { printf ("\t%.10g\n", $1); }
;

exp: NUM { $$ = $1; }
| exp OP_PLUS exp { $$ = $1 + $3; }
| exp OP_MINUS exp { $$ = $1 - $3; }
| exp OP_MUL exp { $$ = $1 * $3; }
| exp OP_DIV exp { $$ = $1 / $3; }
/* Unary minus */
| OP_MINUS exp %prec NEG { $$ = -$2; }
/* Exponentiation */
| exp OP_EXP exp { $$ = pow($1,$3); }

| LP exp RP { $$ = $2 }
;

%%

Definitions Grammar Rules

int yyerror(char * s){
printf("%s\n",s);

}

int main(){
yyparse();

}

Driver and
Error routines

Operator associativity

• Consider the following sentence: “a op b op c”, (where op
is an operator);

• Should the above expression be interpreted as “(a op b)
op c” or as “a op (b op c)” ?

• This depends on the operator associativity:
Parsetree if op is right-associativeParsetree if op is left-associative

a

b c

OP

OP

a b

cOP

OP

Operator precedence

a OP_PLUS b OP_MUL c OP_PLUS d

a

b c

OP_PLUS

OP_MUL

OP_PLUS

d

Higher precedence

Operator precedence declarations

Available declaration forms:
• %right op

specifies right-associativity of operator op;
• %left op

specifies left-associativity of operator op;
• %nonassoc op

specifies no associativity: “a op b op c”
must be considered a syntax error.

Operator precedence

• All the operators declared in the same
precedence declaration have equal
precedence, and nest together according to
their associativity:
e.g.: %left OP_PLUS OP_MINUS

• Operators declared later have the higher
precedence and are grouped first:
e.g.: %left OP_PLUS OP_MINUS

%left OP_MUL OP_DIV

Context-dependent precedence

• Often, the precedence of an operator depends on the
context, e.g. unary minus:
OP_MINUS a OP_MUL b OP_MINUS c
(the first OP_MINUS has higher precedence than
OP_MUL which, in turn, has higher precedence than the
second OP_MINUS)

a

bOP_MINUS

OP_MUL

OP_PLUS

c

Context-dependent precedence

• Declare a precedence for a fictitious terminal symbol as
follows:

%left ‘+’ ‘-’
%left ‘*’ ‘/’
%left UMINUS

• Now the precedence of UMINUS can be used in specific
rules, as follows:

expr : ...
| expr ‘+’ expr
| ...
| ‘-’ expr %prec UMINUS
;

Operator precedence resolution

• First, a precedence is assigned to each
declared operator, then each rule
containing those operators is assigned the
same precedence as the last declared
symbol in rule;

• Conflicts are resolved by comparing the
precedences of the look-ahead symbol and
of the rule.

Operator precedence resolution
• If the look-ahead has the higher

precedence, bison chooses to shift,
otherwise to reduce.

• If rule and look ahead have the same level
of precedence, bison makes a choice
based on associativity:
– left means reduce
– right means shift

Infix Notation Calculator
with variable storage

• Grammar Rules
S (S)S | S+S | S-S | S*S

| S/S | S^S | -S
S number | variable
S variable = S

Infix Notation Calculator
with variable storage in bison

%{
#include <math.h>
#include "calc.h"
%}

%union {
double val;
symrec * tptr;
}

%token NEWLINE
%token LP
%token RP
%token <val> NUM
%token <tptr> VAR
%type <val> exp

%right EQ
%left OP_MINUS OP_PLUS
%left OP_MUL OP_DIV
%left NEG
%right OP_EXP

input:
/* empty */
| input line
;

line:
NEWLINE

| exp NEWLINE { printf ("\t%.10g\n", $1); }
| error NEWLINE { yyerrok; }
;

exp: NUM { $$ = $1; }
| VAR { $$ = $1->var; }
| VAR EQ exp { $$ = $3; $1->var = $3;}
| exp OP_PLUS exp { $$ = $1 + $3; }
| exp OP_MINUS exp { $$ = $1 - $3; }
| exp OP_MUL exp { $$ = $1 * $3; }
| exp OP_DIV exp { $$ = $1 / $3; }
| OP_MINUS exp %prec NEG { $$ = -$2; }
| exp OP_EXP exp { $$ = pow ($1, $3); }
| LP exp RP { $$ = $2; }
;

Definitions Grammar Rules

Semantic Values

• Sometimes, more than one semantic value type is
needed;

• In bison this is achieved by the directive
%union {

type1 field1;
………………………
typeN fieldN;

}

Semantic Values (2)
• All the terminal and non-terminal symbols can

have only one of the possible type for its own
semantic value.

• Non terminals:
%type <field_x> <token>

• Terminals:
%token <field_x> <token>

• All:
$<field_x>$
$<field_x>1
…

Error recovery

• When a syntactically incorrect input is
encountered, two different behaviors are
possible:

1. Stop the parsing immediately, notify a syntax
error and call yyparse() again.

2. Try to recover the error and continue the
parsing.

Error recovery (2)

• The first solution is more convenient in an
interactive parser.

• The second solution is more convenient in a
parser which takes a source file as an input.

• Error recovery in bison is achieved by adding a
rule recognizing the special token ‘error’ and
calling function yyerrok() in the semantic
action.

Shift-reduce conflicts

• Suppose our grammar contains the following
productions:
if-st: IF expr THEN stmt (1)

| IF expr THEN stmt ELSE stmt (2)
;

• When LA=ELSE the parser could:
– reduce the four symbols (IF, expr, THEN,
stmt) on top of the stack, according to the first rule;
or

– shift the ELSE symbol on top of the stack;

• This is the classic “dangling else” conflict.

Shift-reduce conflicts (2)

• The ‘reduce’ behavior associated the ELSE
symbol with the outermost IF.

• The ‘shift’ behavior associates the ELSE
symbol with the innermost IF
(this is the default behavior).

• The first case of ‘dangling else’ appears in
the specifications of the Algol 60
programming language.

Useful options

• YYACCEPT
it pretends that a valid language sentence has
been read; it causes yyparse() to immediately
return 0 (success), ignoring the rest of the input;

• YYABORT
it causes yyparse() to immediately return 1
(failure), ignoring the rest of the input;

