
Introduction Process handling Process Inspection System Management

System Administration

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

April 6, 2011



Introduction Process handling Process Inspection System Management

Introduction

Why a system administration lesson?

Strong binding between system architecture and network stack

System administration and management skills are required to
“survive” in this environment

As a bonus, they come in handy in a lot of other contexts

They are taken for granted in other courses



Introduction Process handling Process Inspection System Management

Chosen Platform

The chosen platform for the course is GNU/Linux

The notions easily generalise to affine Unices with menial
changes

No restriction on the redistribution of tools/practicing material



Introduction Process handling Process Inspection System Management

Study methodology

“Ten minutes of direct practice are worth ten hours of study
in system adminstration”

Choose a distribution and install it in a realistic environment
(at least a VirtualBox VM)

Ubuntu is an easy shot for beginners
Slackware is extremely clean as internal structure
Gentoo might not be for the faint of heart

Begin practicing soon, these notions take time to consolidate



Introduction Process handling Process Inspection System Management

Overview

This lesson encompasses :

How to manage the multitasking environment in a Linux
system

How to inspect the behaviour of a process running on the
system

How to manage a running system



Introduction Process handling Process Inspection System Management

Under the hood

In a Linux system the processes are bound by a strict
parent-son family tree

The boot process, after the kernel has bootstrapped the
machine, yields the control to init

The init process generates all the other system process
either directly or indirectly

Every running process, except init has a father

Every process has a unique numeric identifier called Process
ID (PID)



Introduction Process handling Process Inspection System Management

Seeing processes

the first step in understanding what’s going on in a system is
looking at the processes running

This can be done through the ps (process snapshot) command

ps provides a list of the processes running, together with a
couple of informations

The output of the command can be redirected to a text file in
the usual way (ps > file.log)



Introduction Process handling Process Inspection System Management

Common options

ps supports multiple syntaxes for the options, we will see the
standardised one

-e shows every process running

-u <user> shows all the processes running as a certain user

-Lf shows the number of threads of every process

ps provides a list of the processes running, together with a
couple of informations



Introduction Process handling Process Inspection System Management

Interactive listing

ps provides a static list of the processes

In a number of situations it is more helpful to see the
evolution of the system state

To this end, the top command provides a sequence of
dynamic snapshots

htop is a revised and enhanced version of top, still it is not
the default tool



Introduction Process handling Process Inspection System Management

Interactive listing

ps provides a static list of the processes

In a number of situations it is more helpful to see the
evolution of the system state

To this end, the top command provides a sequence of
dynamic snapshots

htop is a revised and enhanced version of top, still it is not
the default tool



Introduction Process handling Process Inspection System Management

How do they work?

All these tools have a common source for information : the
proc filesystem

It is a virtual filesystem which provides informations on all the
processes running (and something more)

It’s existence is Linux specific, but other Unices provide
equivalent mechanisms to access the same pieces of
information



Introduction Process handling Process Inspection System Management

Into the details

We have seen how to obtain an overlook of the state of a
system

Up to now, the processes were (almost) black boxes

Time to open the box and see what’s inside

This can be done via:

Debuggers (gdb)
Process tracers (strace,lttng)
File monitoring tools (lsof)



Introduction Process handling Process Inspection System Management

The GNU Debugger

The GNU Debugger provides a plethora of functions to
inspect the inner working of a program

It acts through running the process under exam and tracing
its behaviour via the ptrace system call

It is able to alter the memory content of the program at the
human debugger’s will

A detailed overview of the use will be presented in the next
development tools lesson



Introduction Process handling Process Inspection System Management

Following the white rabbit : Strace

An alternative to per-instruction debugging is analysing the
process at system call level

Every process1 needs to interact with the operating system

It is possible to monitor the issuing and return values of every
system call performed by a process

Two tracing tools are available strace and lttng

We will deal with strace as it is the most widespread one.

1or at least any process doing meaningful tasks



Introduction Process handling Process Inspection System Management

Following the white rabbit : Strace

Follows the execution of a process and monitors syscalls

Offers a great way to see the big picture of a program
behaviour

strace by default prints out all the syscalls of a process

Since they usually are a TON -o <filename> redirects to a
file :)

-e=group allows you to select only some syscalls relative to a
peculiar function

process

network

file

signal



Introduction Process handling Process Inspection System Management

Following the white rabbit : Strace

The -p <PID> options allows you to monitor a running
process2

The -f option enables the tracing of the child processes
alongside the father

The -t option prints out the system time at which the syscall
has been run

2provided you have the permission to do so



Introduction Process handling Process Inspection System Management

An overlook on files

One of the Unix commandments states : “Under unix
everything is a file”

This means that the prime interface for data communication
between kernelspace and userspace, and among processes are
files

This implies that all the physical devices are seen as a file by
the programs in userspace

Moreover, also sockets are seen as a peculiar type of file

Although the syscall are often compatible, it is strongly
advised not to mix them (e.g. use write instead of send)



Introduction Process handling Process Inspection System Management

An overlook on files

A well designed file monitoring tool is a prime resource to
understand what’s happening

The ultimate tool for file (i.e. mmapped devices, libraries,
sockets and so on) monitoring is lsof

The basic use just lists all the open files on a system

Depending on the compile time options, lsof may list only
the files of the processes owned by the user



Introduction Process handling Process Inspection System Management

Argh, too much info!

Ok, nice fireworks, but we’d like something more useful :

the -c <string> option allows to list all the files opened by
any command starting with <string>

the -c /<string>/ option allows to list all the files opened
by any command starting with <regex>

the +D option allows to list all open files in a directory

the -u option allows to list all open files of a certain user

the options are usually combined with a logical OR

-a switches to AND combining



Introduction Process handling Process Inspection System Management

Not only files

Remember, “Under unix everything is a file”:

So we can also easily list open and listening sockets!

the -i @IP option allows to list all the sockets open from-to a
certain IP address

the -P option prints numeric ports representations

the -p option allows to list all open files from a precise PID

the options may be reversed through prepending the usual
caret symbol



Introduction Process handling Process Inspection System Management

Managing the running processes

Up to now we have seen how to investigate the behaviour of a
running system

We did not interfere with it, we just observed what was going
on

This was done at system level (process tree examination) and
at a finer grain (single process examination)

We will now see how to manage the running processes



Introduction Process handling Process Inspection System Management

Signals

The prime mechanism in a Unix system to communicate
asynchronous information to a process are signals

Signals can be though of as “software generated interrupts”

Every process has a signal handlers table acting as the
interrupt handler table

The signal handler may choose to ignore the signal, do
something or just fall back to the default action

Usually the default action is the termination of the process



Introduction Process handling Process Inspection System Management

Signals

Here’s a list of commonly used signals, together with the default
behaviour:

SIGTERM : terminates the process “gracefully” (file buffers are
flushed and synchronized)

SIGSEGV : terminates the process, issued upon a segmentation
fault

SIGQUIT : terminates the process dumping the memory
segment into a core file

SIGKILL : wipes instantly the process away from the system
[unstoppable]

SIGSTOP : sets the process in wait state [unstoppable]

SIGCONT : resumes the execution of a process



Introduction Process handling Process Inspection System Management

The Unix flare gun : kill

The commandline tool to send signals is aptly named ... kill

Common syntax: kill <signal> [options]

The signal to be sent can be specified either by its ID or its
textual mnemonic

The issued signals set flags in the fired signal table of the
target process

Since signals are resolved when a process is going to be run,
STOP then shoot signals to die-hard processes

Resume them with a SIGCONT and they’ll be gone



Introduction Process handling Process Inspection System Management

Combining shell commands

All the commands from the Unix shell follow the philosophy
“do only one thing”

By default they act on stdin and output the result on stdout

You can chain commands through the use of the | character

You can redirect the output of any command to a file using
the > character

An in-depth view on shell programming will be given further
on in this course



Introduction Process handling Process Inspection System Management

Combined actions

Due to a variety of reasons3 a process may start spawning
processes undefinitely (in jargon, a forkbomb takes place)

Sending a SIGTERM/SIGKILL signal to each process by hand
is annoying

A combined action of kill and lsof makes an excellent
forkbomb squad :

lsof -t outputs only the PIDs of the process owning the files
(remember , libraries and mmaps are files :))
using a combination of shell expansion and kill allows you to
wipe a clean slate of a lot of forkbombs

3Like, say, forgetting a fork call into a loop with a wrong termination
condition



Introduction Process handling Process Inspection System Management

Eye of the beholder

Watching over things is always important

Sometimes it’d be useful to have a self refreshing command
out of any command

watch does exactly the tricks

-n <seconds> specifies how often to refreshing

-d highlights the changes from the last time (useful for
waking you up)



Introduction Process handling Process Inspection System Management

Bottom line

Managing the system will be important during this whole
course

A reasonable amount of skill in system management will save
you way more time than the one you have invested in
acquiring it

When in doubt on something, do not fear to employ the
system manual (available invoking man <command>)


