
Encasing Block Ciphers to Foil Key Recovery
Attempts

via Side Channel*

Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and Michele Scandale
Dipartimento di Elettronica, Informazione e Bioingegneria – DEIB, Politecnico di Milano

email: name.surname@polimi.it

Abstract Providing efficient protection against energy consumption based side chan-
nel attacks (SCAs) for block ciphers is a relevant topic for the research community, as
current overheads are in the 100× range. Unprofiled SCAs exploit information leak-
age from the outmost rounds of a cipher; we propose a solution encasing it between
keyed transformations amenable to an efficient SCA protection. Our solution can be
employed as a drop in replacement for an unprotected implementation, or be retrofit
to an existing one, while retaining communication capabilities with legacy insecure
endpoints. Experiments on a Cortex-M4 µC, show performance improvements in the
range of 60×, compared with available solutions.

1 Introduction
Embedded computation devices in the modern age are becoming increasingly perva-
sive and are often required to perform security critical tasks where providing data or
communication confidentiality is a mandatory requirement. The prime choice to do so
is to employ symmetric block ciphers, due to their high efficiency even when limited
computing resources are available, e.g., on low end microcontrollers and RFID chips.
As a direct consequence of the pervasiveness and low cost of the embedded devices,
a practical attacker model is the one considering the possibility of seizing one of such
devices with the purpose of extracting the secret key of the block cipher, thus invalidat-
ing completely the provided security guarantees. Direct access to the device allows the
attacker to exploit information encoded in environmental parameters of the computa-
tion, e.g., its energy consumption. Such an attack is commonly known as a passive Side
Channel Attack (SCA) and has been shown to be remarkably efficient in breaching the
security of widely deployed products [15]. SCAs exploit the information measured on
a computing device to retrieve the secret key guessing it piecewise. In particular, the
dependence of the energy consumption of a device from the values of the data being

*This is a preprint version of the paper published in the proceedings of the ICCAD conference. The final
version can be found at: http://dx.doi.org/10.1145/2966986.2967033

1



processed is employed as an unintended communication channel. To this end, an inter-
mediate value of the computation, which can be obtained as a combination of the input
and a small amount of the secret key (e.g., a single-byte xor), is guessed for all the
possible values of the involved key portion. Such guesses are then employed to predict
the side channel measurement, and compared against the actual one via a statistical
test, obtaining a ranking of the tested key guesses: the one providing the best fitting
prediction is the one relying on the actual key. The prediction of the side channel mea-
surement is typically done with an a-priori model, e.g., the Hamming weight of the
computed value or its Hamming distance from the value previously stored in the same
register. The alternate way, involves exploiting an a-posteriori model obtained profil-
ing the side channel behavior of another instance of the device under attack, which is
fully controlled by the attacker [15].

Provably secure countermeasures against such attacks [12,15,19,20] provide a way
of performing the computation of the block cipher in a redundant fashion, employing
the addition of unpredictable random values to it. The modified computation strategy
provides a correct output, while ensuring that intermediate values depend on both the
inputs and the random values added.

Consequentially, to lead a successful SCA when these countermeasures are in
place, the information coming from the side channel leakage of more than one interme-
diate value must be combined to build a model which is independent from the random
values involved. Such a combination is performed subtracting the measurements (e.g.,
power consumption) obtained from the side channel when the materialization of the
random values is performed, from the measurement where they have been all com-
bined to the intermediate value to be attacked. The result is shown to be proportional
to the xor combination of all the aforementioned values [15], which does not contain
the contribution of the random values, as they are added twice to the same intermediate
value (once by the protected algorithm and once by the combination). The difficulty
of such an attack, known as High-Order (HO) attack, is quantified in terms of either
the number of different side channel leakage values, d, which are combined to perform
it, or of the degree, d, of the statistical moments of the leakage at a single point in
time [15].

In [17], the authors show that, in case it is possible to extract the Hamming weight
of the values being loaded and stored into a µC SRAM exploiting information coming
from a profiled attack, a SCA will succeed in recovering the secret key employed in
the device even in the presence of arbitrarily complex countermeasures, and without
knowledge of the inputs and outputs. However, the profiled attack in [17], which suc-
ceeded on an 8-bit PIC16F877 µC (etched with a 500nm technology node), has been
proven no longer feasible on a more recent 32-bit ARMv7 CPU [4], as a consequence
of the difficulty of obtaining accurate enough profiling information induced by both
technology scaling and a higher complexity of the target device. The authors of [18]
report that in a 1, 530 transistors, 65nm, ASIC implementation of the AES cipher, pro-
cess variation prevented the extraction of the correct Hamming weight profile. In the
light of these results, we will be considering the widely accepted attacker model where
only the knowledge of either the input or the output values of the cipher is required,
and the computational effort required to perform an (un-profiled) SCA against an un-
protected implementation grows exponentially in the number of key bits to be guessed.
In this model, it is possible to reduce the application of the countermeasures only to the

2



first and last rounds of a block cipher, as predicting a value in the remaining portion of
the cipher would imply guessing the value of the entire key [1, 2]. The computational
burden required by the countermeasures grows with the maximum order of the attack
d against which the designer chooses to be protected. Indeed, the number of mea-
surements (which depends on the noise standard deviation) required to perform a d-th
order attack against an implementation grows exponentially with the exponent being
d+1 [16].

Despite the possibility of reducing the application of provably secure SCA counter-
measures only at-the-ends of the block cipher, execution time slowdowns greater than
100× are not uncommon in software implementations, due to the difficulty of protect-
ing either the nonlinear operations or the table lookups present in the cipher [1, 7]. In
the case of hardware implementations such computation time penalties are less severe,
although this is usually obtained at the cost of a significant increase in the occupied
area.

A promising research direction is the one aiming at designing a totally novel cipher,
which is conceived to be both mathematically secure and easy to protect against SCA.
A prominent example of such ciphers is the one proposed in [10]. However, such an
approach needs to face the tradeoff between the mathematical strength of the cipher
(e.g., against linear and differential cryptanalyses) and the efficiency of the SCA pro-
tection (provided by a low algebraic degree of the nonlinear functions employed in the
cipher design) [11].

Our proposal in this work follows a different direction, namely, we encase a block
cipher within two keyed transformations, which are easy to protect against side-channels
and do not affect adversely the mathematical security of the encased primitive. Protect-
ing the keyed transformations with a provably secure SCA countermeasure will thus
leave an attacker unable to break it, and thus with the only option of guessing the en-
tire key employed in one of them to lead an SCA against the encased cipher. This
approach has the advantage of exploiting existing and well scrutinized block ciphers to
provide the mathematical security required from the construction, although it results in
the output value of the augmented primitive not matching the one of the encased cipher
alone. From a more practical perspective, it is possible to employ the proposed aug-
mented cipher as a drop-in replacement for an unprotected one, as it matches its block
size, while the extra key material can be securely obtained employing the approach
described in [14]. In particular, the keys of both the cipher and the keyed transforma-
tions can be computed from the original secret key feeding its concatenation to two,
different and equally long prefixes to two instances of a cryptographic hash function.
The proposed approach can be implemented in both hardware and software solutions,
taking care of implementing the encasing primitive accordingly. A viable software
implementation is also to retrofit existing block cipher instances with the proposed
protection, both in case of software libraries and separate block cipher co-processors,
as it may be realized wrapping at-the-ends the existing artifact computing the primi-
tive. Consequentially, it is possible to have an implementation which is protected, and
may function (if needed) in a legacy-supporting (i.e., unprotected) fashion, skipping
the computation of the keyed transformations. This strategy is akin to the one of the
triple DES (TDEA [13]) cipher in encryption-decryption-encryption mode, which was
proposed both to strengthen the aging single DES cipher and to provide a fallback com-
patibility mode employing the same key in all three DES executions. We note that, in

3



a similar fashion to triple DES, our encased block cipher proposal should be treated as
an atomic primitive when employed in any mode of operation to process inputs larger
than a single block.
Contributions. In this work we propose to provide protection against energy-consumption-
based SCAs encasing a cipher implementation between two keyed transformations,
and applying countermeasures only to them. We designed an efficient-to-protect keyed
transformation which allows us to achieve performance gains greater than 60×, when
compared with the current state of the art of block cipher implementations protected
with provably secure countermeasures, on our experimental platform. We also propose
an automated method to remove transition leakage from software implementations
through zeroing out the contents of a the destination register of an operation, allowing
the developer to consider value leakage alone when protecting the keyed transforma-
tion. We provide an implementation of our contributions as a C++ template library and
a modified LLVM compiler toolchain, and evaluate its effectiveness with respect to the
current state of the art of the side channel countermeasure approaches.
Organization of the work. The remainder of the work is organized as follows: Sec-
tion 2 provides a recap of the state of the art of provably secure countermeasure strate-
gies against side channel, the concept of transition-leakage vulnerability and our pro-
posed solution to cope with it. Section 3 describes our proposed encased cipher con-
struction, detailing the design of the encasing keyed transformation and its security
guarantees, together with the methodology applied to automatically prevent transition
leakage due to register reuse in software implementations. Section 4 provides an exper-
imental campaign on a commercial grade platform, comparing our performance results
with the current state of the art proposals. Finally, Section 5 draws our conclusions.

2 SCA Countermeasures
In this section we will provide the background on the SCA countermeasures, which
we will be employing to secure the keyed transformation, and their computational cost.
Among the significant number of countermeasure strategies proposed in open litera-
ture, we chose the two approaches providing a constructive scheme to design a d-th
order resistant countermeasure. We also describe our contribution on effectively and
efficiently implementing them in software, preventing the so-called transition leakage.
Provably Secure Countermeasures. Among the possible protection schemes, the
Ishai-Sahai-Wagner masking (ISW masking) [12] and Threshold Implementations (TI) [19]
are the two methodologies providing constructions backed by a security proof stating
their soundness up to d-th order attacks. Their structure is related, and the explicit link
between them has been analyzed in [19], highlighting possible implementation issues
in hardware and software.

Both schemes rely on encoding each one of the inputs to the algorithm to be pro-
tected as a set of s≥2 shares taking uniformly distributed bit values during the compu-
tation. Typically, such encoding is performed adding via bitwise xor s−1 independent
random values to each input to obtain the first share, and taking the s−1 random values
as the remaining ones. Once the encoding is completed for all inputs, the computation
of the algorithm itself is adapted to be performed on the encoded values, obtaining
a result which is also split over multiple shares. The adaptation of the algorithm is

4



performed considering it as a set of Boolean functions of its inputs. The result is re-
constructed adding via bitwise xor all its shares. Care should be taken not to combine
all the shares of an intermediate value of the algorithm, lest its value be disclosed.

The ISW masking [12] provides a constructive method to compute Boolean and
and not bitwise operations on share-split variables given the desired protection order
d. Its security proof relies on the fact that the values of any d variables of the adapted
algorithm computation (in any given time instant) could be the simulated by the output
of a random number generator (RNG). As a consequence, a d-th order attacker has
no knowledge whatsoever on the actual values being computed by the algorithm. To
achieve the aforementioned security level, the ISW masking requires to split each of
the unencoded inputs into s=2d+1 shares. The authors of [12] also propose a tweaked
masking scheme (tweaked ISW masking henceforth) allowing to limit the number of
shares to s=d+1, at the cost of a higher pressure on the RNG.

TIs [19] take a different approach at providing the desired d-th order security, modi-
fying the algorithm computation so that, in no time instant the computation of a share of
an intermediate result depends on more than s−d shares of the encoded input, a prop-
erty named d-non-completeness. Applying the scheme to turn the algorithm into a TI
yields a computation of the shares of the result, both respecting the d-non-completeness
property, and satisfying the fact that the xor recombination of all of them produces the
correct value, i.e., the TI is correct. It is known that, for a generic Boolean function of
degree t, it always exist a d-secure TI which encodes each input into sin=td+1 shares,
yielding the result split over sout=

(
td+1
t

)
ones. However, there is no known result on

the optimal values of sin and sout to minimize sin+sout, for a TI of a Boolean func-
tion [5], other than having sin≥d+1 and sout≥d+1 to enable d-non-completeness. The
authors of [19] provide a specific TI to compute the Boolean and (i.e., a Boolean func-
tion with degree t=2) with d=1 and d=2, employing sout=sin=3 and sout=sin=5,
respectively. The TI of the Boolean not operation can be trivially obtained comple-
menting the value in a single share of a split variable.

Both in the case of the ISW masking and the TI, computing a Boolean and on
share-split variables requires O(s2in) operations, computing a not requires O(1) op-
erations, and computing an xor requires O(sin) operations. The reason for the lower
cost of the xor computation is the fact that the share split encoding of the input it-
self is performed via xor. Consequentially, a Boolean function having a low degree
when expressed in Algebraic Normal Form (ANF) can be protected more efficiently
than another one having a higher degree. We considered both ISW masking and TIs as
protection strategies for our keyed transformation, as the tweaked ISW masking pro-
vides a scheme to perform a d protected computation with only s=d+1 shares, while
no TI has been proposed to do so for all values of d. By contrast TIs are computa-
tionally cheaper w.r.t. an ISW implementation with the same number of shares by a
factor linear in sin depending on the specific form of the TI, possibly allowing a better
computational tradeoff at low ds. To provide a fair evaluation of their efficiency, in
Section 4 we compared both approaches for d between 1 and 4.

Whenever it is needed to protect a tuple of Boolean functions acting on the same in-
puts, as in the case of the nonlinear layer of a block cipher (e.g., the AES SUBBYTES),
it is possible to represent the functions as a lookup table, and protect the load opera-
tions performed from it. In [7] a protection scheme for such load operations is pro-
posed, and proven secure under the same attacker model as the ISW masking, showing

5



that such a protection technique is profitable whenever computing the tabulated outputs
of the Boolean function requires a significant amount of and operations. In particu-
lar, the cost of a protected load operation with the algorithm in [7] is proportional to
O(4s2inw), where w is the number of elements of the lookup table.
Transition Leakage Vulnerability. Both ISW masking and TI tackle the issue of mak-
ing the information coming from the intermediate values of a computation, also known
as value leakage, useless for an attacker. While this provides security in fully combi-
natorial hardware, in case memory elements are reused in a sequential implementation,
a new information is leaked on the side channel, namely the so-called transition leak-
age. Such a leakage is typical of software implementations, where it occurs often due
to the natural reuse of the registers, which happens in a general purpose CPUs, when
the liveness interval of the variable allocated into one of them ends. Whenever this
happens, the general purpose register will be reused to store the value pertaining to
a different variable, resulting in a side channel leakage proportional to the Hamming
distance between the two values. Although the frequency of this reuse highly depends
on the amount of register pressure of the code point, and the register allocation policies
of the compiler, it is possible that two shares of the same variable are stored in the same
register thus yielding a leakage of their xor combination, effectively undermining both
the ISW masking and TI countermeasures.

A quantification of the reduction of the security margin due to transition leakage
is provided in [3], where the authors prove that a countermeasure scheme with a d-th
order security margin against value leakage will provide bd2c-th order security against
transition leakage. In this work we provide a contribution to mitigate this security
margin loss for software implementations, providing a solution which is more efficient
than doubling the order of the protection of the countermeasure. This solution relies
on the following:

Lemma 1 (From transition- to value-leakage).
Let V be the set of intermediate variables of a d-th order protected implementation and
T the set of expressions obtained combining via xor every variable pair (v1, v2)∈V×V .
The transition leakage, i.e., the one stemming from elements of T , is a subset of the
value leakage, i.e., the one stemming from elements V , if ∀ t∈T at least one of the two
variables in t is substituted with zero.

Proof. Let t∈T be an expression t=va⊕vb, with va, vb∈V . Replacing vb with the
constant 0, the expression t yields t=va⊕0 =va for any possible value of va, and is
thus contained in V . Analogously, replacing va yields t= vb∈V . Each element t∈T is
contained in V after the substitution is performed on either one of the variables present
in t.

A practical, and conservative, way to meet the condition specified in Lemma 1, is to
materialize the constant 0 in the destination register rd of any CPU instruction before
a new value is stored into it. This can be obtained efficiently either storing in rd the
value rd xor rd, or copying the value 0 from a fixed value register, whenever this is
available (e.g., the register R0 in the MIPS ISA), and ensuring that the register alloca-
tor never reuses one of the operand registers as the destination. We note that load and
store operations can be protected from transition-based leakage taking care of load-
ing a 0 value stored in memory, and storing a 0 in the destination location, respectively.
Such an action will reset the value of the memory data register on the CPU side, before

6



(a) (b) (c)

...

...

...

...

Figure 1: Proposed encasing for a block cipher E , with key KE and block size b, within
two keyed transformations T , with key KT , |KT |≥|KE |≥b (a), detail of the keyed trans-
formation T (b), and detail of the Feistel F function in T , taking I l, K1 as input (c)

a further load/store operation is attempted. We also note that, in case of load
operations, the 0 value should be loaded from the same memory bank of the load to
be protected, so that, the memory data register present on the memory bank is also set
to the constant value. Augmenting the protected code with such instructions can be
effectively, and automatically, done as a compiler pass. Such a program transformation
pursues the direction of providing reduced overhead and low development time SCA
countermeasure application pointed out in several works, such as [3]. The observation
that pre-charging a register prevents transition leakage has been proven effective in [6].
In particular, in [6] the so-called random pre-charging strategy is applied to a fully
unprotected implementation, and realized filling the contents of a register with random
values obtained from an RNG. Employing random pre-charging in our case would still
be effective, although at the unneeded cost of a significant amount of randomness from
the RNG.

3 Augmented Cipher Construction
In this section we provide the details of the encasing strategy proposed to protect a
block cipher E , describing the keyed transformation T employed to do so, detailing its
functional and security features, and the added SCA resistance. We report the method-
ology to provide automated support for transition leakage mitigation modifying the
compiler employed to produce the binaries.

3.1 Encasing Strategy
Willing to protect a block cipher E with a b-bit wide block and secret key KE , we
propose to encase it between two instances of a b-bit wide keyed transformation T
employing a key KT (with |KT |≥|KE |), so that the plaintext P fed to the construction is

7



first processed by T , and its output is fed into the encased cipher E . Subsequently, the
output of E is employed as input to another instance of T to produce the ciphertext C,
as depicted in Figure 1(a).

In [9], the authors show that a construction made of a single, fixed, bijective func-
tion encased between two xor KEY ADDITIONs is necessary to properly define a block
cipher primitive, as removing each one of them results in a cryptographically broken
cipher. A somewhat similar intuition was exploited in [14], where an efficient method
to strengthen the DES cipher against bruteforce attacks was proposed. The authors
of [14] propose to encase the DES cipher between two KEY ADDITIONs (via xor)
involving 64 extra key bits each, thus raising the security margin against exhaustive
key search to ≈2120 trials from the original 256 ones.

The design presented in this paper differentiates from both [9] and [14] in assuming
that the primitive to be protected E is secure, and relies on it to provide the mathemat-
ical security of the construction. Indeed, our approach aims at endowing the encased
primitive with side channel resistance, a feature that no current block cipher is enjoying
by construction.

3.2 Keyed Transformation
To the end of providing side channel resistance to the block cipher primitive of choice
E , encasing it between a simple pair of bitwise xor KEY ADDITIONs as proposed
in [14], and endowing such KEY ADDITIONs with provable side channel protection
in their implementation, would not reach the purpose. Indeed, such a strategy would
only increase by one the number of key bits to be guessed in an SCA aiming at the
ends of the encased cipher [1]. In designing a more complex encasing transformation
T , it should be kept into consideration that the side channel protections applied to it
have a cost growing quadratically in the degree of the ANF representation of its output
bits (see Section 2). To this end, reducing the number of Boolean ands in its ANF
expression will provide substantial performance benefits.

Our design of the encasing keyed transformation T provides the following func-
tional and security features:

(F1). T is bijective for any given KT .

(S1). The cascade T ET presents a security margin against exhaustive key search greater
or equal than the one of E alone.

(S2). KT cannot be derived from P and C without an exhaustive performing an key
search of KE , assuming no side channel information is used.

(S3). An SCA predicting a single input/output bit of T should require guessing at least
|KE | key bits of KT .

(S4). An SCA exploiting an xor-combination of the side channel information coming
from a set of output bits of T should require guessing at least |KE | key bits of
KT .

The resistance of T against statistical mathematical cryptanalysis techniques (e.g.,
against linear, differential and impossible cryptanalysis) is not required as such tech-
niques need pairs of inputs-outputs coming from T , to which the attacker has no access
to in our scenario.

8



Figure 1(b) and Figure 1(c), report the detailed structure of the keyed transforma-
tion T , of which we will now describe how it has been designed to have the afore-
mentioned features, and which aspects of the security guarantees are obtained through
them.

The keyed transformation T is a 2-round Feistel network, employing a 2|KE |+b-bit
long key KT split into two halves K1, K2 each one used in a separate Feistel function
instance F (see Figure 1(b)). The choice of a Feistel network design for T was made
to allow freedom in the design of the Feistel F , as the network structure guarantees
feature (F1) for any possible choice of F . In particular, T −1 is obtained employing
the same structure of T , with the keys K1,K2 input in reverse order. As a consequence,
it is always possible to decipher a plaintext encrypted with the keyed transformation
T ET via the inverse transformation (T ET )−1= T −1E−1T −1, employing KE and KT
properly. Note that alternate constructions for T , e.g., by employing a Substitution-
Permutation Network, may exist: the investigation of a general form of T is beyond
the scope of this work.

Concerning feature (S1), it is crucial for the mathematical security of the T ET
construction that the application of the keyed transformation T to the input and output
of the encased cipher E does not revert the effect of E . To analyze whether this holds,
we follow a line of reasoning similar to the one reported in [8] for the security of
cascade ciphers, and assume E to be a strong cipher, i.e., a random permutation of the
input space for each KE . Such an assumption is commonly maintained to be met by
mathematically unbroken block ciphers. As a consequence, in the T ET construction,
for any possible value of the key KT employed by T , the probability that E−1KE

=TKT
holds (for at least one value of KE ) is: 2|KT |· 2

|KE|

(2b)!
. In our case |KT |=2|KE |+b, and

|KE |≥b (see Figure 1(a) and Figure 1(b)), as the block cipher key typically meets or
exceeds its block size. Therefore, the probability of T inverting the effect of E is
≈ 24b

(2b)!
, which is negligible for any typical size b≥64 of a block cipher input. As a

consequence, the cascade T ET has a security margin against exhaustive key search
greater or equal than the one of the encased cipher alone.

Concerning feature (S2), the crucial point is that the attacker should not be able
to derive the value of KT without resorting to either the exploitation of side channel
leakage or an exhaustive search over KE . An attacker, knowing the value ofthe plain-
text P , should derive the knowledge of both the value of the output of the first instance
of T and the corresponding value of KT (see Figure 1(a)). Since T is bijective for
any given KT , it is possible to find at least one value for KT for any possible output
of T . Since the output of T is unknown to the attacker, all the key guesses relying on
P alone are equally valid. In order to validate a key guess κ for KT , the attacker will
need to compare Tκ(P ) with the result of the following computation on the ciphertext
C: E−1KE

(T −1κ (C)). Under the assumption of E being an unbroken block cipher, the
aforementioned condition can be checked for correctness only performing an exhaus-
tive search for the value of KE . A similar point on the possibility for an attacker to
derive KT starting from the ciphertext C can be made simply swapping the roles of the
input and output of T . It is not possible to retrieve the value of KT without resorting to
an exhaustive key search for KE , or to side channel information.

While employing different keys for the two instances of T depicted in Figure 1(a)
would still provide feature (S2), there is no evident security loss in employing the same

9



key twice [14].
To have T fulfill features (S3) and (S4), namely the need to guess at least |KE | bits

of KT to compute the value of either an output bit of T or an xor-linear combination
of them to perform an SCA, we designed the inner structure of the Feistel function F
as shown in Figure 1(b) and Figure 1(c). Considering that one of the two output halves
of the T function, namely Ol = F(I l, K1)⊕ Ir, is influenced by the output of a single
F function (see Figure 1(b)), it is necessary for a single computation of F to fulfill
features (S3) and (S4) itself. As a consequence of the Feistel structure of T and the use
of the two unrelated keys K1, K2 in it (see Figure 1(b)), the remaining output half of T ,
Or will be compliant with features (S3) and (S4) too if F enjoys them.

To attain this, we designed F as a composition of three layers, applied each one
to the result of the precedent (Figure 1(c)). The first layer adds, via bitwise xor (⊕),
b
2 -bit sized portions of K1 in

⌈
2|KE |
b

⌉
+1 iterations (with |K1|=|KE |+ b

2 ), combining via
bitwise and (∧) the result of each xor with a rotated version of itself. The reason
for the insertion of the and-combination is that performing the xor addition of two
key slices K1,i, K1,i+1 in a row would allow an attacker to consider them as a single
kequiv=K1,i⊕K1,i+1, in turn reducing the number of effective key bits. The reason for
rotating one of the operands of the and-combination is that not doing so would result
in the and-combination outputting the unchanged value of its operands. The rotation
coefficients ρi are obtained via exhaustive search, checking when features (S3) and
(S4) are satisfied on the ANF representation of the output bits of F .

Following the key addition layer, a diffusion layer, realized as a sequence of xor
combinations of the intermediate state with a rotated copy of itself by amounts equal to
2i, i∈{0, . . . , log2(b)−3}, is present. The reason for the rotation indexes being limited
to the aforementioned values is to avoid term cancellation due to double-xor-additions
of the same monomials. Examining the ANF of the output bits of the diffusion layer,
we obtain that each single one depends on at least |KE | key bits. As a consequence,
F satisfies already feature (S3) since predicting any single output bit of it requires
guessing at least |KE | key bits of KT . This implies, according to the security model
in [1], a computational effort of 2|KE | to perform a side channel attack targeting one of
such bits as intermediate value. Consequentially, leading a side channel attack targeting
any intermediate value of the encased cipher will require a higher computational effort
than obtaining its key via exhaustive search [1].

Concerning feature (S4), theF function should be designed so that an xor-combination
of its outputs cannot be computed without guessing less than |KE | bits of KT . To this
end, the final component of the F function (i.e., the non-linear combination in Fig-
ure 1) is a bitwise and of its state bits with a copy of themselves rotated by b

4−1.
We picked the rotation amount equal to b

4−1 after checking via symbolic computation
that the aforementioned value yields good results in terms of producing a significant
amount of monomials which are appearing only once in the ANFs of all the output bits
of F . A viable way to confirm fulfillment of feature (S4), is to check that the ANF of
each output bit of F contains at least |KE | monomials, each of which involves a dif-
ferent bit of KT , and never appears in the ANFs of the other output bits of F . If the
aforementioned condition holds true, there is no xor-combination of output bits that
will make the unique monomials vanish in its result.

Obtaining a set of values of the rotation coefficients ρi making features (S3) and
(S4) hold for the whole F with an encased cipher key size and block size equal to

10



Table 1: Comparison among SCA countermeasure strategies applied to our T transfor-
mation to protect AES-128

(d, s)

AES-T AES-S AES-C
Time Slowdown Time Slowdown Time Slowdown
(µ s) (µ s) (µ s)

None (0, 1) 16.9 ×1.00 78.4 ×1.00 1020 ×1.00
T ET (0, 1) 24.2 ×1.43 89.1 ×1.14 1030 ×1.01
TL-ISW-t (1, 2) 95.2 ×5.63 165.2 ×2.11 1117 ×1.10
TL-ISW (1, 3) 204.0 ×12.07 274.8 ×3.51 1226 ×1.20
TL-TI (1, 3) 110.1 ×6.51 180.0 ×2.30 1131 ×1.11
ISW (1, 5) 393.2 ×23.26 468.3 ×5.97 1416 ×1.39
TI (1, 5) 189.3 ×11.20 255.5 ×3.26 1201 ×1.18
TL-ISW-t (2, 3) 250.3 ×14.81 321.0 ×4.09 1272 ×1.25
TL-ISW (2, 5) 559.6 ×33.11 612.1 ×7.81 1563 ×1.53
TL-TI (2, 5) 322.0 ×18.95 387.8 ×4.95 1339 ×1.31
ISW (2, 9) 2105.0 ×124.56 2222 ×28.34 3095 ×3.03
TL-ISW-t (3, 4) 441.9 ×26.15 511.0 ×6.51 1462 ×1.43
TL-ISW (3, 7) 1089.0 ×64.44 1166 ×14.87 2118 ×2.08
ISW (3, 13) 3402.0 ×201.30 3590 ×45.79 4402 ×4.32
TL-ISW-t (4, 5) 754.4 ×44.63 824.5 ×10.52 1776 ×1.74

|KE |=b=128, |KT |=384, took 1200 CPU-hours on a dual Intel Xeon E5-2630 v3, with
128 GiB of DDR4-2133. The constants found are ρ1=1, ρ2=3, ρ3=53, and can be
used for all block ciphers with the aforementioned block and key size. We note that
any other configuration satisfying features (S3) and (S4) would be equally fine.

Statement 3.1 (SCA resistance of T ET ). Let T ET be a construction with a T trans-
formation satisfying features (F1), (S1)-(S4) protected with d-th order SCA counter-
measures. The computational effort required to recover the encased cipher key KE is
lower bounded by the minimum one between an exhaustive search for KE and a d+1-th
order SCA against T .

To perform an SCA with order smaller than d+1 trying to retrieve a portion of KE ,
the attacker will need to recover either a portion of the input to E , i.e., TKT (P ) or a
portion of its output, i.e., T −1KT

(C). This is a consequence of the fact that provably
secure d-th countermeasures are unconditionally secure against any SCA with order
lower than d+1, and thus nothing can be gathered from the side channel information
coming from the computation of any of the intermediate values of the protected T [12],
leaving only the side channel information coming from the ends of the computation of
T to be fruitfully exploited. Since T satisfies (S3) and (S4), any SCA trying to predict
the value of one of its output bits or a combination thereof will incur in a computational
effort O(2|KE |), the same required for an exhaustive key search of KE .

In case the attacker is able to carry out a d+1 order attack, it is possible for him to
retrieve the value of KT extracting it in suitably sized portions (e.g., bitwise), possibly
faster than an exhaustive search for the value of KE . The number of measurements to
perform a d-th order attack against an implementation grows exponentially with the

11



Table 2: Comparison among the execution time of the proposed countermeasure and
the existing ones as a function of the protection level d. The results are clustered ac-
cording to the implementation strategy employed for the AES-128 cipher: a single
T-Table (AES-T), a single tabulated S-Box (AES-S), and a fully computational imple-
mentation (AES-C). All slowdowns are computed w.r.t. the corresponding unprotected
(d=0) implementation. All absolute running times and slowdowns are provided on a
Cortex-M4 based µC clocked at 84MHz save for the AES-S column marked with †
from [1], which are reported from experiments running on a 1.2GHz Cortex-A9 due to
the lack of publicly available source code

AES-T AES-S AES-C
[This work] [This work] Ref. [1]† Ref. [7] Ref. [20]

d Time Slowdown Time Slowdown Time Slowdown Time Slowdown Time Slowdown
(ms) (ms) (ms) (ms) (ms)

0 0.01 ×1.00 0.07 ×1.00 0.06 ×1.00 0.07 ×1.00 0.3 ×1.00
1 0.09 ×5.63 0.16 ×2.11 0.33 ×5.48 88.4 ×1151.2 6.6 ×20.0
2 0.25 ×14.81 0.32 ×4.09 0.98 ×16.17 217.5 ×2830.5 15.6 ×47.2
3 0.44 ×26.15 0.51 ×6.51 1.98 ×32.62 400.7 ×5214.7 28.7 ×86.4
4 0.75 ×44.63 0.82 ×10.52 – – 637.8 ×8300.3 45.6 ×137.6

exponent being d+1 [16]. Since the value of d is chosen by the designer, it is pos-
sible for him to choose the most fitting tradeoff between the computational overhead
imposed by the SCA countermeasures and the desired security margin. As summa-
rized in Section 2, such computational overhead grows quadratically in the number of
boolean and to be computed, linearly in the number of xors. The computation of T
involves only a limited amount of b

2 -bit wide Boolean ands, namely 2(2|KE |/b) + 2.
For instance, encasing a b = 128 bit block cipher with b=|KE |=128, requires only only
8, 64-bit wide, and operations for each computation of T , resulting in a greater ease
in the application of the SCA countermeasures described in Section 2 with respect to
the current state of the art methods, such as the ones proposed in [1, 7, 20]. Although
we do not claim the proposed solution is minimal either with respect to the amount of
nonlinear operations, nor with respect to the amount of key material employed in KT ,
the experiments in Section 4 show that significant gains can be achieved employing it.

3.3 Automated Countermeasure Instantiation
We realized the SCA protected keyed transformation T as a
C++11 template library providing the possibility of choosing the employed counter-
measure strategy (ISW masking, tweaked ISW masking or TI, as described in Sec-
tion 2) and the protection order d. Our template library providing the protected T takes
as a parameter d, the countermeasure strategy, b and the base type of the array with
which both the cipher state and the key are represented, together with the number of
such elements constituting KE .

To tackle the transition leakage (described in Section 2) and the possible pitfalls
which may take place in the encoding phase of the countermeasures we modified the
LLVM compiler toolchain allowing it to lower two opaque built-ins, __builtin_crypto_xor

12



and __builtin_crypto_and, into intrinsic operations employed by our template
library to compute all the xor and and operations in T and the encoding/decoding
phases enclosing it.

Both intrinsic instructions are lowered by the instruction selection pass of the
LLVM backend of the desired target ISA (ARM-Thumb2 in our case) into appropriate
pseudo-instructions, which specify the constraint that the destination register should
be distinct from both source ones. This constraint is imposed so that it is possible,
through a local transformation only, to precharge the destination register to 0 before
the result is actually stored, without damaging either operand of the instruction. We
note that this transformation is possible assuming that the target ISA supports three-
operands instructions, such as it is the case of ARM (both classic and Thumb/Thumb2)
and MIPS. We also note that no other constraint is imposed by our approach on the
target ISA making it easily applicable to other ones.

Right after the register allocation pass has been run, we tackle the issue of pro-
tecting the transition leakage of memory operations in the functions of the source code
where the keyed transformation is called. We recall that the register allocation pass
may perform spill actions, i.e., push the contents of a register onto the stack, whenever
the set of useful registers to store a variable are exhausted. Symmetrically, whenever
the spilled value is required to compute an instruction, the value is subject to a fill ac-
tion, loading it back into an available register. To this end, we add an extra stack-slot
to the allocated ones which will be used to store the constant 0 at the beginning of this
function. Moreover we reserve R9 as our support register to materialize the constant 0
whenever it is needed to protect spill operations; we note that such a reservation is not
needed for ISAs which have a dedicated register set to 0 such as R0 in the MIPS ISA.
Subsequently, the code of the function to be protected is augmented adding an extra
store operation into the stack-slot dedicated to the constant 0 before each spill is per-
formed, and an extra load operation from the 0-dedicated stack-slot into the destination
register of each fill operation before the fill itself.

Finally, right before the assembly emission pass is run, we process all the pseudo-
instructions, inserting an instruction setting the destination register rd to 0 via storing
rd xor rd into it. Following the insertion of the zeroing of the destination register,
we also insert, right after the computation of the pseudo-instruction, a zeroing action for
each one of its operands which will be no longer used. As a last action, we change the
opcode of the pseudo-instruction lowering it into the actual one of the corresponding
ARM/Thumb2 instruction.

4 Experimental Evaluation
In this section we validate our approach on an ARM Cortex-M4 based µC. Our plat-
form of choice is the STM32F407 µC, with 192kiB SRAM, 1MiB Flash on a commer-
cial grade STM32F4 Discovery board, clocked at 84MHz. The µC is equipped with an
RNG able to provide 32 bits of randomness every 2 clock cycles in our experimental
setting. We employed three C implementations of the AES-128 block cipher. The first
one, AES-T, relies on a single T-Table to speed up all the non-key-related operations
of the AES round at the cost of a 768B increase in data memory; the second one, AES-
S employs a single S-Box, and the third one, AES-C, does not rely on any tabulated
nonlinear function, computing explicitly the SUBBYTES primitive, matching one of

13



the two approaches proposed in [1]. All the implementations were encased between
two keyed T employing 384 bits of key material, to provide at least 128-bit equivalent
security against SCA. The rotation constants ρ1=1, ρ2=3, ρ3=53 of the F function
were obtained through exhaustive search, as reported in Section 3. The implementa-
tions were compiled with our modified LLVM 3.4 compiler and release-grade (-O3)
optimizations before being loaded on the board, producing binaries both with our tran-
sition leakage protection (marked as TL in the tables), and without. We checked that,
after the templates were instantiated, and the full set of release grade optimizations
acted on the code, no instrumental code from the templates was left, other than that of
the desired protection. We obtained the timing results measuring the time between the
assertion of a GPIO at the beginning of the execution, and its deassertion at the end
sampling it with a Picoscope 5203 DSO, at a sampling frequency of 1GSa/s. All the
timing measurements are averaged over 30 executions, and exhibit a sample standard
deviation lower than 1% of the sample mean. Table 1 reports the result of the com-
parison of the execution time and code sizes obtained applying different side channel
attack countermeasures to the T transformations in the augmented ciphers to provide
protection up to d=4, together with the required number of shares s. In particular we
provide results on the regular ISW masking, and its tweaked version (marked with –t)
trading off extra pressure on the RNG for a lower amount of shares. We provide results
employing the TI pointed out in [19] for all the degrees having available formulas.

Table 1 shows how the TL protected tweaked ISW masking yields the lowest possi-
ble overhead per protection level (i.e., value of d) on our target platform (corresponding
rows are marked in gray), closely followed by the TI of [19]. It is noteworthy to men-
tion the fact that the employed TIs requires 2d+1 shares to achieve the same protection
level of the tweaked ISW, and comparing its computational requirements with the ones
of the regular ISW shows that TIs are able to provide the same protection level with
about half of the overhead, in turn confirming their greater efficiency with respect to
an ISW scheme employing the same amount of shares s. As there are currently no
openly available, high-order TI instances providing d-th order security employing d+1
shares only, nor there is a formal constraint prohibiting such a construction, we deem
the direction of designing such a TI a promising one to provide efficient countermea-
sures. Data in Table 1 provided show that, on our platform, the tradeoff offered by the
tweaked ISW is favorable with respect to its regular version, as the throughput of the
RNG is high enough not to penalize the tweaked implementation for requiring more
random values. Indeed, the tweaked ISW protection is roughly twice less demanding
than the un-tweaked one. Finally, applying our automated protection against transition
leakage allows significant gains with respect to employing a higher number of shares
in any of the protection schemes. The gain increases with the protection level, as an
increase in the number of shares implies a quadratic growth in overhead, while our
transition leakage protection has a linear cost in the number of protected instructions.

Table 2 reports the comparison of the proposed approach with the results available
in open literature on applying high-order SCA countermeasures to software imple-
mentations of the AES block cipher. In particular, the results of both [7] and [20]
were obtained running the C implementation available from [7] on our platform, taking
care of replacing the call to a software PRNG with a load operation from the platform
hardware RNG for the sake of a fair comparison. We report the results of [1] on its
experimental platform, namely a 1.2GHz Cortex-A9 SoC (TI-OMAP4460). The re-

14



Table 3: Slowdowns of the fastest protected implementation of each work compared
with the unprotected (d=0) AES-T (the fastest unprotected implementation)

AES-T AES-S AES-S AES-C
[This work] Ref. [1]† Ref. [7] Ref. [20]

d Slowdown Slowdown Slowdown Slowdown
0 ×1.00 ×3.59 ×4.54 ×19.63
1 ×5.63 ×19.72 ×5234.3 ×394.3
2 ×14.81 ×58.20 ×12869.8 ×928.4
3 ×26.15 ×117.36 ×23710.1 ×1698.2
4 ×44.63 – ×37739.6 ×2703.6

sults in Table 2 show how our approach compares favorably in terms of performance
both to the one of [7] where a software AES implementation with a single S-Box is
protected performing table re-computation in a provably secure fashion, and the one
of [20] where an AES implementation exploiting a computational S-Box is protected
employing ISW masking and tailoring the computation of the S-Box so to be efficient
with it. In both cases, our approach provides speedups greater than an order of mag-
nitude, with growing gains when higher order implementations are considered. The
comparison with the approach of [1] where provably secure countermeasures, namely
the ISW masking, are applied automatically only to the first and last rounds of a com-
putational S-Box implementation of the AES cipher is favorable: 2.11× in our S-Box
based implementation versus 5.48 for the case of d=1 and growing with d up to 6.5×
versus 32.6× for the highest protection level provided by [1]. This highlights how
protecting the T transformation is more efficient than protecting a few rounds of AES.

In Table 3 we report the comparison in terms of computation time among the best
solutions available in [1, 7, 20] and ours with the unprotected AES-T implementation,
which is the fastest one on our target platform. The provided data show how our so-
lution is the one having the lowest slowdowns for all ds, even when compared against
results obtained on a faster platform, such as the ones of [1]. In particular, we note that
comparing our implementation against the fastest from [1], a portion of the speedup
is to be be ascribed to the possibility of employing the T-Tables AES variant, which
is inherently faster than the one relying on S-Boxes used in [1]. However, a direct
comparison of our protected AES-S implementation with the one in [1] (see Table 2)
reports speedups in the ×2 (d=1) to ×3.8 (d=3) range, regardless of our implementa-
tion running on a significantly less performant platform.

5 Concluding Remarks
We presented a protection strategy against SCA relying on encasing a block cipher im-
plementation between two SCA-protected keyed transformations T . The experimental
campaign showed significant performance improvements w.r.t. alternative solutions
providing the same security margin through the use of provably secure countermea-
sures. The performance gains are due to the lightweight nature of the keyed trans-
formation T , and the reduced amount of expensive-to-protect nonlinear operations in
it.
Acknowledgements. This work was supported in part by the EU grant awarded for

15



the actions: “SafeCOP” (ECSEL Joint Undertaking 2015-RIA) Grant agreement no.
692529 and “M2DC” (EU H2020 Research and Innovation Programme) Grant agree-
ment no. 688201.

References
[1] G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi. Compiler-based side channel

vulnerability analysis and optimized countermeasures application. In The 50th
Annual Design Automation Conference 2013, DAC ’13, Austin, TX, USA, May 29
- June 07, 2013, pages 81:1–81:6. ACM, 2013.

[2] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. A Multiple Equivalent
Execution Trace Approach to Secure Cryptographic Embedded Software. In The
51st Annual Design Automation Conference 2014, DAC ’14, San Francisco, CA,
USA, June 1-5, 2014, pages 210:1–210:6. ACM, 2014.

[3] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. On the Cost
of Lazy Engineering for Masked Software Implementations. In CARDIS 2014,
volume 8968 of LNCS, pages 64–81. Springer, 2014.

[4] V. Banciu, E. Oswald, and C. Whitnall. Reliable Information Extraction for Sin-
gle Trace Attacks. In DATE 2015, pages 133–138. ACM, 2015.

[5] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-Order
Threshold Implementations. In ASIACRYPT 2014, volume 8874 of LNCS, pages
326–343. Springer, 2014.

[6] M. Bucci, M. Guglielmo, R. Luzzi, and A. Trifiletti. A Power Consumption
Randomization Countermeasure for DPA-Resistant Cryptographic Processors. In
PATMOS 2004, volume 3254 of LNCS, pages 481–490. Springer, 2004.

[7] J. Coron. Higher Order Masking of Look-Up Tables. In EUROCRYPT 2014,
volume 8441 of LNCS, pages 441–458. Springer, 2014.

[8] S. Even and O. Goldreich. On the Power of Cascade Ciphers. ACM Trans. Com-
put. Syst., 3(2):108–116, 1985.

[9] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. J. Cryptology, 10(3):151–162, 1997.

[10] V. Grosso, G. Leurent, F. Standaert, and K. Varici. LS-Designs: Bitslice Encryp-
tion for Efficient Masked Software Implementations. In FSE 2014, volume 8540
of LNCS, pages 18–37. Springer, 2014.

[11] A. Heuser, O. Rioul, and S. Guilley. A Theoretical Study of Kolmogorov-
Smirnov Distinguishers - Side-Channel Analysis vs. Differential Cryptanalysis.
In COSADE 2014, volume 8622 of LNCS, pages 9–28. Springer, 2014.

[12] Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In CRYPTO 2003, pages 463–481, 2003.

16



[13] ISO/IEC JTC 1/SC 27. Information technology – Security techniques – Encryp-
tion algorithms – ISO/IEC 18033-3-2010. http://www.iso.org, 2015.

[14] J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX). J. Cryptology, 14(1):17–35, 2001.

[15] P. C. Kocher, J. Jaffe, B. Jun, and P. Rohatgi. Introduction to Differential Power
Analysis. J. Crypt. Eng., 1(1):5–27, 2011.

[16] E. Prouff and M. Rivain. Masking against Side-Channel Attacks: A Formal Se-
curity Proof. In EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159.
Springer, 2013.

[17] M. Renauld and F. Standaert. Algebraic Side-Channel Attacks. In Inscrypt 2009,
volume 6151 of LNCS, pages 393–410. Springer, 2009.

[18] M. Renauld, F. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flandre. A For-
mal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In EUROCRYPT 2011, volume 6632 of LNCS, pages 109–128. Springer,
2011.

[19] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidat-
ing Masking Schemes. In CRYPTO 2015, volume 9215 of LNCS, pages 764–783.
Springer, 2015.

[20] M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
CHES 2010, pages 413–427, 2010.

17


