
Advanced Compiler System for Education

Politecnico di Milano - DEI

Formal Languages and Compiler Group
Andrea Di Biagio and Giovanni Agosta

December 3, 2007

Contents

1 Acse 2

1.1 Compilation process . 2
1.2 Tokens for LanCE . 3
1.3 A grammar for LanCE . 4
1.4 Example of Source Code . 6
1.5 Semantic actions . 6
1.6 Program information . 7
1.7 Source Program Variables . 9
1.8 Symbol Table . 9
1.9 Example . 10
1.10 API documentation . 11
1.11 Examples of Bison semantic actions 13

1.11.1 Expressions . 13
1.11.2 do-while statement . 16

2 Assembler 18

2.1 How the Assembler works . 18
2.2 Assembly format . 19

2.2.1 Ternary Instructions 20
2.2.2 Binary Instructions . 24
2.2.3 Unary Instructions . 27
2.2.4 Jump Instructions . 29
2.2.5 Assembler Directives 30

2.3 Object file format . 31

3 MACE 33

3.1 How MACE works . 33
3.2 Architecture . 34

3.2.1 Data Registers . 35
3.2.2 Program Counter . 35
3.2.3 Status Register . 35

1

3.3 Addressing Capabilities . 36
3.3.1 Instruction Format . 36

3.4 Instruction Set . 38
3.4.1 Ternary Instructions 40
3.4.2 Binary Instructions . 44
3.4.3 Unary Instructions . 48
3.4.4 Jump Instructions . 52

2

Chapter 1

Acse

ACSE (Advanced Compiler System for Education) is a simple compiler devel-
oped for educational purpose as a tool for the course “Formal languages and
compiler” . ACSE is able to translate a source code written in LanCE 1.3 (Lan-
guage for Compilers Education) into an assembly for the MACE architecture
(see the MACE documentation).

The main goal of this documentation is to show the compilation process
by introducing every single step made by the compiler. Also, in the following
sections is briefly discussed the grammar for a source code written in LanCE

that can be given as input to the ACSE compiler. Finally, a brief introduction
is given for each module and library used by ACSE.

1.1 Compilation process

In figure 1.1 is shown the entire compilation process. Every phase of the
compilation chain takes as input the output of the previous phase. ACSE

takes as input a source file written in LanCE language. (see1.3).
The source file is analyzed and ‘tokenized’(i.e. subdivided into tokens)

by a lexer in the first phase of the compilation process. The string of tokens
is then processed by the parser in order to check and analyze the overall
structure of the source program.

ACSE uses a parser automatically generated with Bison. Bison is a general-
purpose parser generator that converts an annotated context-free grammar
into an LALR(1) deterministic bottom-up or parser for a given grammar.

At first the SDT analyzes the correctness of a tokenized input provided by
the lexer; then it executes some semantic actions (if any) in correspondence
of each recognized grammatical rule. The current parser implementation
provides support for both error tracking and notification of simple warning

3

messages.
During the parsing process, the tokenized input is transformed into spe-

cific assembly statements for the target machine (MACE). However at this
point of the compilation process, the assembly produced as output uses an
unbounded number of registers. Since the target machine owns a limited set
of general-purpose registers, the liveness analysis and a register allocation
steps are then performed.

Finally the assembly code is written as output in the last phase of the
compilation process.

1.2 Tokens for LanCE

As previously said, a lexer component scans the input source code in search
of specific patterns of strings. These patterns are defined via regular expres-
sions and are used in order to identify lexical tokens (or lexemes). Regular
expressions are coded in the form of FLEX rules (see the FLEX documentation).

ACSE delegates the lexical analysis to a ‘lexer’ automatically generated by
FLEX.

The following is a list of bindings between tokens and regular expressions.

Lexical Analysis
Control Flow

 Analysis

Liveness
Analysis

Register
Allocation

Code Emission

Source Code Tokens Translated
Program

Control Flow Graph

Live Intervals Register
Assignment

Assembly

Syntax Directed
Translation

Figure 1.1: Compilation process

4

Token Regular Expression Token Regular Expression
DIGIT [0-9] ID [a-zA-Z][a-zA-Z0-9]*
LBRACE { RBRACE }
LSQUARE [RSQUARE]
LPAR (RPAR)
SEMI ; COLON :
PLUS + MINUS -
MUL OP * DIV OP /
MOD OP % AND OP &
OR OP | NOT OP !
ASSIGN = LT ¡
GT ¿ SHL OP ≪
SHR OP ≫ EQ ==
NOTEQ != LTEQ <=
GTEQ >= ANDAND &&
OROR ‖ COMMA ,
DO do ELSE else
FOR for IF if
TYPE int WHILE while
RETURN return READ read
WRITE write

1.3 A grammar for LanCE

In this section is provided a grammar for the source code.

5

program : var declarations statements
var declarations : var declarations var declaration

| ε
var declaration : TYPE declaration list SEMI
declaration list : declaration list COMMA declaration

| declaration
declaration : IDENTIFIER ASSIGN NUMBER
statements : statements statement

| statement
statement : IDENTIFIER LSQUARE exp RSQUARE

ASSIGN exp SEMI
| IDENTIFIER ASSIGN exp SEMI
| if statements
| if statements ELSE code block
| while statements
| do while statements SEMI
| SEMI
| RETURN SEMI
| READ LPAR IDENTIFIER RPAR SEMI
| WRITE LPAR exp RPAR SEMI

code block : statement
| LBRACE statements RBRACE

while statements : WHILE LPAR exp RPAR code block
do while statements : DO code block WHILE LPAR exp RPAR
if statements : IF LPAR exp RPAR code block

6

exp : NUMBER
| IDENTIFIER
| IDENTIFIER LSQUARE exp RSQUARE
| NOT OP NUMBER
| NOT OP IDENTIFIER
| exp AND OP exp
| exp OR OP exp
| exp PLUS exp
| exp MINUS exp
| exp MUL OP exp
| exp DIV OP exp
| exp LT exp
| exp GT exp
| exp EQ exp
| exp NOTEQ exp
| exp LTEQ exp
| exp GTEQ exp
| exp SHL OP exp
| exp SHR OP exp
| exp ANDAND exp
| exp OROR exp
| LPAR exp RPAR
| MINUS exp

Taking the parser generated by Bison starting from this grammar, the
syntax analyzer is able to check that a token string is syntactically correct.

1.4 Example of Source Code

An example of a program - compliant with the grammar shown in the pre-
vious section - that computes the factorial of an integer number and prints
out to standard output the result is shown in table 1.1.

If the number given as input is negative the program writes to standard
output ‘-1’ before exiting.

1.5 Semantic actions

The parser tests the correctness of each statement found in the source pro-
gram and eventually performs some semantic actions. In a Bison grammar,

7

int value, fact; /* variables declarations */

read(value); /* read from standard input the

* value of ’value’ */

if (value < 0) { /* invalid input */

write(-1);

return;

}

fact = 1; /* initialize ’fact’ */

while(value > 0) { /* compute the factorial of value */

fact = value * fact;

value = value - 1;

}

write(fact); /* write the result to standard output */

Table 1.1: An example of source code

a grammar rule can have an action made up of C statements. Each time the
parser recognizes a match for that rule, the action is executed.

If the statement is syntactically correct, a semantic action (a Bison rule)
is executed every time a non-terminal, associated with a semantic action, is
recognized and reduced.

The main goal of the ACSE SDT is to gather all the useful information
about each statement of the source program (the source code given as input).
Each instruction is typically translated into one or more assembly instruc-
tions. Then, each assembly instruction is stored inside a data structure called
t program infos defined in axe engine.h.

1.6 Program information

An instance of t program infos contains all the useful information about a
program being compiled.

A t program infos is a composition of various element:

• An instance of a symbol table

• An instance of label manager

8

• A list of program variables

• A list of instruction and assembler directives.

Before starting with the lexical analysis and the syntactical analysis, the
compiler initializes an instance of t program infos called program.

Source program is translated (by executing various semantic actions) into
various assembly instructions and assembler directives that are orderly stored
inside the program instance.

Data structures for assembly instructions and assembler directives are
defined in a file called axe struct.h.

An assembly instruction is described by:

• An operation identifier (for example: ‘SUB’);

• A set of instruction parameters which depend on the instruction type;

• A user comment (optional);

• A label identifier (optional).

Valid instruction parameters are:

• Register identifiers;

• Immediate values (signed integer values);

• Addresses (for example: label identifiers).

For example: an assembly ADD instruction is a ternary instruction that
performs a binary add between two values. An instruction that performs a
sum between ‘R1’ and ‘R2’, and stores the result in ‘R3’ can be declared
as follows:ADD R3 R1 R2

the keyword “ADD” is used as an operation identifier. The number of
instruction parameters depends only on the instruction type. For example:
ternary instructions accept only register identifiers as parameters.

In the previous example the parameters ‘R3’ ‘R1’ ‘R2’ were all register
identifiers. A register identifier is an alias for a machine general-purpose
register.

A user comment can be associated to an assembly instruction for debug-
ging purpose. A label can be associated to an assembly instruction as shown
in the example below:

L1: ADD R3 R1 R2

In this example, a label ‘L1’ is associated to an assembly ADD instruction.
A Assembler directive is defined as follows:

9

• Directive type identifier (for example: .WORD)

• Value associated with the directive

• A label identifier (optional)

Here is an example of assembler directive .WORD: .WORD 0

More information about assembly instructions and assembler directives
can be found in the Assembler documentation.

1.7 Source Program Variables

Every time a program variable declaration is found in the source code, an
instance of t axe variable is created and assigned to the list of variables of
a t program infos instance.

Structure t axe variable defines:

• A data type (for example: INTEGER);

• An Array Size (defined only if the variable is an array);

• An initial value;

• A variable identifier;

Here is an example of how it’s possible to declare in a Source Program a
variable called “var” as an integer with an initial value of ‘100’:

int var = 100;

An instance of t axe variable for the program variable “var” would be
defined in the following manner: INTEGER as data type; 100 as initial value;
the string “var” as variable identifier.

All the instances t axe variable are used at the end of the compilation
process in order to produce .WORD and/or .SPACE assembler directives (see
the MACE documentation).

In our example, the t axe variable defined for the program variable
“var” will produce a .WORD 100 data directive.

1.8 Symbol Table

A symbol table is a data structure used at translation time to keep track of
each program variable encountered in the source program.

Each entry of the symbol table is associated to a single program variable.
An entry of the symbol table is defined in the following manner:

10

Source Program Assembly Comments
int value, fact; .DATA /* variables declarations */

L0: .WORD 0 /* initialize 4 bytes of data to 0 */
L1: .WORD 0 /* initialize 4 bytes of data to 0 */

read(value); .TEXT /* start of a block of code */
READ R1 0 /* read from standard input */

if (value < 0) { SUBI R3 R1 #0 /* sub immediate */
SLT R3 0 /* set R3 on less than zero */
BEQ L2 /* ‘branch on equal’ to label L2 */

write(-1); ADDI R4 R0 #-1 /* add immediate */
WRITE R4 0 /* write R4 to standard output */

return; } HALT /* stop the program execution */
fact = 1; L2: ADDI R2 R0 #1
while(value > 0) { L3: SUBI R5 R1 #0

SGT R5 0 /* set R3 on ‘less than zero’ */
BEQ L4 /* ‘branch on equal’ to label L4 */

fact = value * fact; MUL R6 R1 R2 /* binary mult. operation */
ADDI R2 R6 #0

value = value - 1; } SUBI R7 R1 #1
ADDI R1 R7 #0
BT L3 /* ‘branch true’ to label ‘L3’ */

write(fact); L4: WRITE R2 0 /* write R2 to standard output */
HALT /* stop the program execution */

Table 1.2: Intermediate Assembly representation

• ID - A variable identifier (see section 1.7)

• Type - The data type of the variable ‘ID’ (see section 1.7)

• A Register identifier.

The register identifier refers to a register location (a machine general-
purpose register) where the variable is currently stored.

1.9 Example

After parsing, the program in table 1.1 produces the intermediate assembly
shown in table 1.2.

The content of the symbol table is shown in table 1.3.

11

Variable Identifier Type Register Location
value INTEGER R1
fact INTEGER R2

Table 1.3: Symbol Table

1.10 API documentation

The main purpose of this section is to give an overview of the essential pro-
gramming interfaces of ACSE. Since the ACSE design defines several func-
tions over a number of header files, the user is also referred to the commented
source code.

The file symbol table.h declares the functions needed to manipulate the
content of a symbol table:

• look up a symbol table for a symbol

• define and insert a new symbol into a symbol table

• set the register location information of a symbol

• retrieve the register location information associated with a symbol

The symbol table.h includes a file called sy table constants.h

which defines a set of macros used for error tracking.

The file axe struct.h defines many data structures used by the parser.
The parser is automatically generated with Bison giving as input the file
Acse.y.

The Label Manager is defined in axe labels.h. A Label Manger offers
a set of functions to works with labels:

• reserveLabelID

• fixLabelID.

12

reserveLabelID is used when the user code requires the creation of a
new label. fixLabelID is used to assign a given label to an instruction.

The library axe gencode.h defines a set of functions that can be directly
used to generate assembly instructions and insert them into an instance of
t program infos.

For example: the function gen add instruction is used to create an
ADD instruction.

The file axe engine.h defines the t program infos data structure and
other useful functions used (for example) to:

• initialize a new instance of t program infos

• add an assembly instruction to a t program infos instance

• create a variable (i.e. an instance of t axe variable) and assign it to an
instance of t program infos

• request for a free register location (see the function getNewRegister)

• write an assembly file as output of the compilation process (see the
function writeAssembly)

The file axe array.h provides a set of functions used to generate load/store
instructions from/to array elements.

An example is the function loadArrayElement that takes as input:

• an array variable identifier

• an array subscript identifying an array element.

This function returns as output a register location identifier that holds
the value of the specified array element.

According to the Bison grammar defined in Acse.y, an expression is de-
fined by the non-terminal exp (see also the section 1.3). The file axe structs.h

defines an expression as an instance of t axe expression. An instance of
t axe expression contains two fields:

13

• A value (a register identifier or an immediate value)

• An expression type.

The expression type is used to determine if the value of the expression is
stored into a register or is an immediate value. The file axe expressions.h

defines two functions used to generate instructions for expressions:

• perform binary comparison;

• perform bin numeric op.

The function perform bin numeric op is used to generate instructions
for binary numeric operations (for example: the expression “a + 5”). perform binary comparison

is used to generate instructions that perform a comparison between two val-
ues. These functions take as input two expressions (the two operands of the
binary comparison/operation) and return an instance of t axe expression

(containing the result of the binary comparison/operation).
Finally, the file axe utils.h defines the function get symbol location

that works as a wrapper for the functions defined in symbol table.h. Given
as input a variable/symbol identifier, the get symbol location look up the
symbol table in search of the register location where the symbol is stored. If
the requested variable/symbol was never loaded from memory to a register
(i.e. the symbol holds an invalid register location info), this function asks
for a free register where to assign the variable/symbol. At last, the register
location (where the variable/symbol is stored) is returned as output to the
caller.

1.11 Examples of Bison semantic actions

In this section we discuss three examples of bison semantic actions. The first
and the second example describes how to manipulate expressions. The third
example describes how to define semantic actions for a do-while statement.

1.11.1 Expressions

Section 1.10 introduced what is an expression and which functions exposed
by axe expressions.h can be used in order to generate code for expressions.

Here we will discuss the semantic rules associated with the following Bison

rules:
exp :

| exp AND OP exp
| exp LT exp

14

According to the FLEX source file Acse.lex, an AND OP token represent
a ‘binary and’ operator (&). An example of ‘binary and’ operation is the
following: ‘‘a & b’’ (where a and b are variables declared in the source
program).

Suppose in this example that both a and b are program variables which
values are stored into unknown register locations. At first we have to query
the symbol table in order to retrieve the register locations associated with
both a and b. This can be done by calling the function get symbol location

declared in axe utils.h for each of the two program variables.
Finally, we can use the function gen andb instruction declared in axe gencode.h

in order to generate an assembly ANDB instruction. A gen andb instruction

requires five parameters:

• An instance of t program infos that contains all the information about
the program being compiled;

• A destination register identifier;

• Two register identifiers as parameters for the ANDB instruction;

• A field that is used to specify the addressing mode for both destination
register and the second source register. This field can assume one of
the following values (defined in axe constants.h:

– CG DIRECT ALL

– CG INDIRECT ALL

– CG INDIRECT DEST

– CG INDIRECT SOURCE

The value CG DIRECT ALL is used when both destination register and the
second source register are directly addressed. The value CG INDIRECT ALL

is used when both destination register and source register are indirectly ad-
dressed. The value CG INDIRECT DEST is used when the destination register
is indirectly addressed. The value CG INDIRECT SOURCE is used when the
second source register is indirectly addressed.

If we want to store result of the ANDB instruction in a new register (i.e.
a register that is unused), at first we must call the function getNewRegister

declared in axe engine.h. Once called, the function getNewRegister re-
turns as output a new register identifier. At last, we are able to call the
gen andb instruction.

However, according to the Bison grammar, the result must be stored in an
instance of t axe expression. Thus, in our example we have to create an

15

instance of t axe expression by calling the function create expression

defined in axe struct.h.
Actually the function perform bin numeric op is used to perform all the

operations discussed so far in this section.
The function perform bin numeric op takes as input the following pa-

rameters:

• An instance of t program infos that contains all the information about
the program being compiled;

• Two instances of t axe expression (one for each of the two operands);

• An operation identifier (for example: the macro ANDB defined in axe constants.h

should be used as identifier for the previous example);

Valid binary operation identifiers are:

• ADD

• ANDB

• ORB

• SUB

• MUL

• DIV

The function perform binary comparison can be used to implement the
semantic action for the rule exp : | exp LT exp

The function perform binary comparison takes as input the following
parameters:

• An instance of t program infos that contains all the information about
the program being compiled;

• Two instances of t axe expression (one for each of the two operands);

• A condition code (for example: the macro LT defined in axe constants.h

should be used in this last example);

Valid condition codes are:

• LT (i.e. “less than zero ”);

• GT (i.e. “greater than zero ”);

16

• EQ (i.e. “equal to zero ”);

• NOTEQ (i.e. “not equal to zero”);

• LTEQ (i.e. “less than or equal to zero”);

• GTEQ (i.e. “greater than or equal to zero”).

Both the function perform bin numeric op and the function perform binary comparison

return as output an instance of t axe expression.

1.11.2 do-while statement

A Bison semantic action for a do-while statement can be formalized in the
following manner:

do_while_statements : DO

{

$1 = reserveLabel(program);

fixLabel(program, $1);

}

code_block WHILE LPAR exp RPAR

{

gen_bne_instruction (program, $1, 0);

};

In order to implement a do-while statement, we have to assign a label to
the first instruction in the loop body. That label will be used as a target
for a conditional jump instruction. An expression is used to formalize the
loop termination condition. In the given example, if the outcome of exp is
different from zero (i.e. the loop condition is verified), the control should
jump back to the first instruction of the loop body (defined by using the
non-terminal code block); otherwise the control get out from the loop.

We can use the function reserveLabel declared in axe engine.h to ask
the Label Manager (associated with a specific instance of t program infos)
for a new label identifier. A label is an instances of t axe label (a structure
declared in axe stuct.h which only field is an integer value).

The function fixLabel declared in axe engine.h takes as input an in-
stance of t program infos and an instance of t axe label (the label that

17

must be assigned to the following assembly statement). We can use the
fixLabel to assign a label to the first instruction of the loop body.

Note that both the function reserveLabel and the function fixLabel are
defined as wrappers respectively for the reserveLabelID and fixLabelID

(declared in axe labels.h).
Finally, we use a gen bne instruction to generate a conditional branch

instruction to the first instruction of the loop body.

18

Chapter 2

Assembler

This manual describes how an assembler should translate an assembly pro-
duced by an AXE compiler into a valid executable (an object file) for a MACE

architecture. If you want to learn more about the MACE internal architec-
ture, see the MACE documentation. The assembler takes an assembly as input
(i.e. symbolic assembler - output of a compilation process) containing both
instructions and assembler directives. Each assembly instruction is directly
translated into a specific machine code statement. Every statement is en-
coded according to the “binary format rules” discussed in the MACE docu-
mentation. Assembler directives at first are interpreted and then discarded
without producing any machine code instructions. The output of the trans-
lation process is an object file containing both machine code instructions and
data information.

The first section describes how does an assembler program works (which
translation steps are performed and in which order). The second section
introduces the assembly language and the assembler directives supported by
the current implementation of the assembler. The last section describes the
internal structure of an object file and its binary format.

2.1 How the Assembler works

According to the theory, an Assembler is a program that translates an as-
sembly into an object file for a specific architecture. The binary format of
an object file typically depends on both the underlying architecture and the
Operative System. Thus, the structure of an object file may be vary and
typically contains a lot of information other than machine code and data
information (for example: a symbol table that is used by a Linker for code
relocation purpose).

19

An assembly instruction can be directly mapped in an equivalent machine
code instruction. However, an assembly contains also assembler directives

and symbols (i.e. labels) that can’t be directly translated into machine code.
Usually an assembler directive is used (for example) to notify to the assembler
the beginning of a block of data; Labels can be assigned to specific memory
locations. Assembler has the job of translating all the labels in valid memory
addresses.

Also, an assembler verifies the correctness of the assembly code given as
input (performing a syntactic analysis on the input file and notifying all the
encountered errors to the standard error).

As post-condition, only valid assembly files will be translated in “well
formed” object file.

We can formalize the behavior of an assembler in the following three
macro phases:

• The assembler initialize its internal data structures.

• An assembly given as input is parsed: every instruction/directive is
validated.

• An object file is written as output using all the information gathered
during the parsing process.

In the first phase, the assembler initializes various internal data struc-
tures for future use/modification (during the parsing process). Those data
structures will be filled with information about data directives and symbolic
instructions. These information will be used then in the last phase in order
to produce a valid object file.

The second phase consists in a parsing process where instructions at first
are validated (i.e. the consistency of each instruction is checked) and then
translated in an intermediate form. Assembler directives are always inter-
preted and never translated in machine instructions. Assembler directives
typically are used to manipulate the content of the data segment once loaded
the object file in memory.

In the last phase all the information gathered during the parsing process
are finally used to make an object file that will be written on file and returned
as output of the whole program.

2.2 Assembly format

In this section we will introduce the syntax of each supported instruction
and data directive.

20

An instruction specifies an operation type and a list of operands. Operand
types can be:

• register identifiers.

• immediate values

• address values

Registers can be directly or indirectly addressed only in ternary instruc-
tions. Also in ternary instructions only the destination register and the
second source register can be indirectly addressed.

Supported operand types are:

• register identifiers.

• immediate values

• address values

The current section will use the following notation for register identifiers
and immediate values

• Rn Register ‘n’.

• Rdest Destination Register.

• Rsource1 First source operand.

• Rsource2 Second source operand.

• (Rn) Indirect register ‘n’.

• #imm Immediate value. imm is an integer value.

Assembler directives use their own semantic and format. Current imple-
mentation uses a very little subset of the GNU assembler directives.

2.2.1 Ternary Instructions

Rdest and RSource2 can be directly or indirectly addressed. Here we will
give a brief description of every instruction. A complete description of every
instruction can be found in the MACE documentation.

21

ADD Add binary
Syntax: ADD Rdest RSource1 RSource2
Examples Semantics
ADD R2 R1 R3 R2 ← R1 + R3
ADD R2 R1 (R3) R2 ← R1 + [R3]
ADD (R2) R1 (R3) [R2] ← R1 + [R3]

SUB Subtract binary
Syntax: SUB Rdest RSource1 RSource2
Examples Semantics
SUB R2 R1 R3 R2 ← R1 - R3
SUB R2 R1 (R3) R2 ← R1 - [R3]
SUB (R2) R1 (R3) [R2] ← R1 - [R3]

ANDL AND logical
Syntax: ANDL Rdest RSource1 RSource2
Examples Semantics
ANDL R2 R1 R3 R2 ← R1 && R3
ANDL R2 R1 (R3) R2 ← R1 && [R3]
ANDL (R2) R1 (R3) [R2] ← R1 && [R3]

ORL OR logical
Syntax: ORL Rdest RSource1 RSource2
Examples Semantics
ORL R2 R1 R3 R2 ← R1 ‖ R3
ORL R2 R1 (R3) R2 ← R1 ‖ [R3]
ORL (R2) R1 (R3) [R2] ← R1 ‖ [R3]

EORL Exclusive OR logical
Syntax: EORL Rdest RSource1 RSource2
Examples Semantics
EORL R2 R1 R3 R2 ← R1

⊕
R3

EORL R2 R1 (R3) R2 ← R1
⊕

[R3]
EORL (R2) R1 (R3) [R2] ← R1

⊕
[R3]

22

ANDB AND bit by bit
Syntax: ANDB [Rdest] [RSource1] [RSource2]
Examples Semantics
ANDB R2 R1 R3 R2 ← R1 & R3
ANDB R2 R1 (R3) R2 ← R1 & [R3]
ANDB (R2) R1 (R3) [R2] ← R1 & [R3]

ORB OR bit by bit
Syntax: ORB Rdest RSource1 RSource2
Examples Semantics
ORB R2 R1 R3 R2 ← R1 | R3
ORB R2 R1 (R3) R2 ← R1 | [R3]
ORB (R2) R1 (R3) [R2] ← R1 | [R3]

EORB Exclusive OR bit by bit
Syntax: EORB Rdest RSource1 RSource2
Examples Semantics
EORB R2 R1 R3 R2 ← R1

⊕
R3

EORB R2 R1 (R3) R2 ← R1
⊕

[R3]
EORB (R2) R1 (R3) [R2] ← R1

⊕
[R3]

MUL MUL binary
Syntax: MUL Rdest RSource1 RSource2
Examples Semantics
MUL R2 R1 R3 R2 ← R1 * R3
MUL R2 R1 (R3) R2 ← R1 * [R3]
MUL (R2) R1 (R3) [R2] ← R1 * [R3]

DIV DIV binary
Syntax: DIV Rdest RSource1 RSource2
Examples Semantics
DIV R2 R1 R3 R2 ← R1 / R3
DIV R2 R1 (R3) R2 ← R1 / [R3]
DIV (R2) R1 (R3) [R2] ← R1 / [R3]

23

SHR Binary Shift to Right
Syntax: SHR Rdest RSource1 RSource2
Examples Semantics
SHR R2 R1 R3 R2 ← R1 ≫ R3
SHR R2 R1 (R3) R2 ← R1 ≫ [R3]
SHR (R2) R1 (R3) [R2] ← R1 ≫ [R3]

SHL Binary Shift to Left
Syntax: SHL Rdest RSource1 RSource2
Examples Semantics
SHL R2 R1 R3 R2 ← R1 ≪ R3
SHL R2 R1 (R3) R2 ← R1 ≪ [R3]
SHL (R2) R1 (R3) [R2] ← R1 ≪ [R3]

ROTL Rotate binary
Syntax: ROTL Rdest RSource1 RSource2
Semantics: Rdest ← RSource1 RSource2
Description: Actually the ROTL instruction is not

supported by the current architecture.
RSource1 value is rotated to left by
RSource2 positions.

ROTR Rotate binary
Syntax: ROTR Rdest RSource1 RSource2
Semantics: Rdest ← RSource1 RSource2
Description: Actually the ROTR instruction is not

supported by the current architecture.
RSource1 value is rotated to right by
RSource2 positions.

24

NEG Negate
Syntax: NEG Rdest RSource1 RSource2
Examples Semantics
NEG R2 R1 R3 R2 ← - R3
NEG R2 R1 (R3) R2 ← - [R3]
NEG (R2) R1 (R3) [R2] ← - [R3]
Note: RSource1 is unused.

SPCL Special opcode
Syntax: SPCL Rdest RSource1 RSource2
Semantics: Undefined at the moment.

2.2.2 Binary Instructions

ADDI Add with Immediate operand
Syntax: ADDI Rdest RSource1 #Immediate
Example Semantics
ADDI R2 R1 #VAL R2 ← R1 + VAL

SUBI Subtract with Immediate operand
Syntax: SUBI Rdest RSource1 #Immediate
Example Semantics
SUBI R2 R1 #VAL R2 ← R1 - VAL

ANDLI AND with Immediate operand
Syntax: ANDLI Rdest RSource1 #Immediate
Example Semantics
ANDLI R2 R1 #VAL R2 ← R1 && VAL

ORLI OR with Immediate operand
Syntax: ORLI Rdest RSource1 #Immediate
Example Semantics
ORLI R2 R1 #VAL R2 ← R1 ‖ VAL

25

EORLI Exclusive OR with Immediate operand
Syntax: EORLI Rdest RSource1 #Immediate
Example Semantics
EORLI R2 R1 #VAL R2 ← R1

⊕
VAL

ANDBI AND bit by bit with Immediate
operand

Syntax: ANDBI Rdest RSource1 #Immediate
Example Semantics
ANDBI R2 R1 #VAL R2 ← R1 & VAL

ORBI OR bit by bit with Immediate operand
Syntax: ORBI Rdest RSource1 #Immediate
Example Semantics
ORBI R2 R1 #VAL R2 ← R1 | VAL

EORBI Exclusive OR bit by bit with immediate
operand

Syntax: EORBI Rdest RSource1 #Immediate
Example Semantics
EORBI R2 R1 #VAL R2 ← R1

⊕
VAL

MULI MUL binary with Immediate operand
Syntax: MULI Rdest RSource1 #Immediate
Example Semantics
MULI R2 R1 #VAL R2 ← R1 * VAL

DIVI DIV binary with Immediate operand
Syntax: DIVI Rdest RSource1 #Immediate
Example Semantics
DIVI R2 R1 #VAL R2 ← R1 / VAL

26

SHRI Binary Shift to Right
Syntax: SHRI Rdest RSource1 #Immediate
Example Semantics
SHRI R2 R1 #VAL R2 ← R1 ≫ VAL

SHLI Binary Shift to Left
Syntax: SHLI Rdest RSource1 #Immediate
Example Semantics
SHLI R2 R1 #VAL R2 ← R1 ≪ VAL

ROTLI Rotate binary
Syntax: ROTLI Rdest RSource1 #Immediate
Example Semantics
ROTLI R2 R1 #VAL R2 ← R1 rotated to left of VAL posi-

tions

ROTRI Rotate binary
Syntax: ROTRI [Rdest] [RSource1] #[Immedi-

ate]
Example Semantics
ROTRI R2 R1 #VAL R2 ← R1 rotated to right of VAL po-

sitions

NOTL Logical complement
Syntax: NOT Rdest RSource1 #Immediate
Example: Semantics
NOTL R2 R1 #VAL R2 ← ! R1

Note: RSource1 is unused.

27

NOTB Binary complement
Syntax: NOTB Rdest RSource1 #Immediate
Example Semantics
NOTB R2 R1 #VAL R2 ← ∼ R1

2.2.3 Unary Instructions

NOP No Operation
Syntax: NOP

MOVA Move Address to Register Location
Syntax: MOVA RDest Address
Example Semantics
MOVA R2 L1 R2 ← L1 (where L1 is a Label)

JSR Jump To Subroutine
Syntax: JSR RDest Address
Note : not implemented yet.

RET

Syntax:
Note : not implemented yet. Actually an HALT instruction is translated instead of a RET.

LOAD Fill a register with a value read from
memory

Syntax: LOAD RDest Address
Example Semantics
LOAD R2 L1 R2 ← [L1] (where L1 is a Label)

STORE Spill a value
Syntax: STORE RSource Address
Example Semantics
STORE R2 L1 L1 ← R2 (where L1 is a Label)

28

HALT Halt the machine processor
Syntax: RET

Scc Set according to condition ‘cc’
Syntax: Scc Rdest Address
Semantics (pseudo-code): IF cc == 1 THEN Rdest ← 1; ELSE

Rdest ← 0.

Note: Address parameter is unused. For
more information see the MACE docu-
mentation

Possible values for ‘cc’:
EQ set on equal;
GE set on greater than or equal;
GT set on greater than;
LE set on less than or equal;
LT set on less than;
NE set on not equal;

Description: The specified condition code ‘cc’ is
tested. If the condition is true, ‘Rdest’
is set to one; Otherwise ‘Rdest’ is set
to zero.

Example: SGT R2 0 set the value of R2 to 1 if the condition
GT is verified; 0 otherwise.

READ Read from standard input an integer
value

Syntax: READ RSource Address
Example Semantics
READ R2 0 Read from input an 32-bit signed inte-

ger value, and store the value to ‘R2’.
Note: Address parameter is unused.

29

WRITE Write to standard output an integer
value

Syntax: WRITE RSource Address
Example Semantics
WRITE R2 0 Write to standard output a 32-bit

signed integer value stored into R2.
Note: Address parameter is unused.

2.2.4 Jump Instructions

Bcc Branch on condition cc
Syntax: Bcc Label
Semantics (pseudocode): IF cc == 1 THEN

jump to label Label.

Note: For more information, see the MACE

documentation.

Possible values for ‘cc’:
EQ Branch on equal;
GE Branch on greater than or equal;
T Branch always. The branch is always

‘taken’;
F This condition is never verified. Thus,

branch like this are never ‘taken’;
HI : Branch on higher than
LS Branch on lower than or same;
GT Branch on greater than;
LE Branch on less than or equal;
LT Branch on less than;
NE Branch on not equal;
CC Branch on carry clear;
CS Branch on carry set;
VC Branch on overflow clear;
VS Branch on overflow set;
BPL Branch on plus (i.e. positive);
BMI Branch on minus (i.e. negative);

30

Description: The specified condition code ‘cc’ is
tested. If the condition is true, the
program counter will be modified in
order to point to a specific labeled in-
struction.

Examples:
BEQ L1 Branch to L1 on “equal to zero”
BT L3 Always branch to L3
BLT L2 Branch to L2 on “less than zero”

2.2.5 Assembler Directives

The current implementation provides only a very limited set of assembler
directives. All assembler directives have names that begin with a period (‘.’)
and every directive has its own semantic associated with.

Here is a list of all the supported directives:

.data Marks the beginning of a block of data direc-
tives

.text Marks the beginning of a block of instructions

.word Reserve and set a memory word (32-bit) in the
data segment

Syntax: .word VAL
Semantics: Reserve a 32-bit memory location inside the

data segment and set the starting value of the
location to VAL

Examples:
.word 5 reserve a word location and set its content

with the 32-bit integer value ‘5’
.word 0 reserve a word location and set its content

with the 32-bit integer value ‘0’

31

.space This directive reserve (without initialize) a
given number of bytes into the data segment

Syntax: .space VAL
Semantics: Reserve VAL (contiguous) bytes inside the data

segment.
Examples:
.space 8 5 contiguous bytes reserved
.space 32 32 contiguous bytes reserved

2.3 Object file format

An object file is returned as result of the assembler process. It contains both
machine code instructions and data information (that will be stored inside
the data segment).

In figure 2.1 is shown the prototype of an object file

’L’ ’F’ ’C’ ’M’

4 bytes
(currently unused)

Machine code instructions

Content of the
Data Segment

Figure 2.1: Object file format

32

An object file is composed by an header of 20 bytes followed by the
content of the instruction segment and the content of the data segment. The
first 4 bytes must always contain the ASCII binary representation for the ‘L’
‘F’ ‘C’ ‘M’ characters. The following 16 bytes are actually unused: they are
reserved for future uses.

33

Chapter 3

MACE

MACE (Machine for Advanced Compiler Education) is a program that simu-
lates the execution of an object file (containing both machine code and data
directives) produced as output by an assembler.

Both object file format specification and symbolic assembler are discussed
in the assembler documentation. This document describes the overall internal
machine architecture and the supported instruction set.

In the first sections is briefly introduced the internal architecture of the
MACE machine. Also the first section introduce the execution steps per-
formed by the machine at run-time. The last two sections describe the com-
plete instruction set and the encoding format for every instruction.

3.1 How MACE works

MACE execution model is simple. At first the internal state of the machine is
initialized by a bootstrap procedure that works in the following manner:

• Test if the object file given as input exists and is readable.

• The content of every machine register is set to zero. Thus, PC will point
to the first instruction in the code segment.

• A block of memory of size 2Kb is reserved and will contain both code
and data segment

• Machine code is loaded from the object file into the code segment

• Data is loaded from the object file into the data segment

34

Once completed the bootstrap procedure the program is ready to be ex-
ecuted.

The execution process works as follows:

• Repeat:

– fetch the next instruction according to the value of PC

– decode the fetched instruction

– execute the instruction

– update (if necessary) the content of the register file

– update the value of program counter (PC)

– update the value of the status register (PSW)

• Until an HALT instruction is encountered.

3.2 Architecture

In figure 3.1 is shown the architectural design of the machine simulated by
MACE

M e m o r y

Code Segment

Data Segment

R0

R1

R2

.

.

.

.

.

.

.

R30

R31PC

PSW

Registers

Figure 3.1: Architectural Design

The architecture is composed by:

35

• 32 General-Purpose 32-Bit registers.

• 32-Bit Program Counter (PC)

• 32-Bit Status Register (PSW)

3.2.1 Data Registers

The current architecture provides 32 general-purpose registers (R0 - R31).
These registers are typically used for word (32 bits) operations. Register R0
is always set to 0 (i.e.: even if an instruction tries to assign a value to R0,
all the following instructions will always see a value of zero inside the R0

location).

3.2.2 Program Counter

The PC contains the address of the instruction currently executing. During
instruction execution, the processor automatically increments the content or
places a new value in the PC.

3.2.3 Status Register

The Status Register (PSW) is a 32-Bit register, but only his four lower bits
are available in the user mode. Many integer instructions affect the content
of the PSW. Program instructions also use certain combinations of these bits
to control program and system flow. The first four bits represent a condition
of the result generated by an operation. In the instruction set definitions,
the PSW is illustrated as in figure 3.2.

CN Z OUnused bits

3 031

Figure 3.2: Status Register

The bit ‘N’ (Negative) is set if the most significant bit of the result of
an instruction (typically an arithmetic operation) is set to 1; otherwise it is
cleared.

The bit ‘Z’ (Zero) is set if the result of an instruction (typically an arith-
metic operation) is equal to zero; otherwise it is cleared.

36

The bit ‘V’ (Overflow) is set only if an arithmetic overflow occurs implying
that the result cannot be represented in the operand size.

The bit ‘C’ (Carry) is set if a carry out of the most significant bit of the
operand occurs for an addition, or if a borrow occurs in a subtraction.

3.3 Addressing Capabilities

Most operations take a source operand and destination operand, compute
them, and store the result in the destination location. Single-operand op-
erations take a destination operand,compute it, and store the result in the
destination location. External microprocessor references to memory are ei-
ther program references that refer to program space or data references that
refer to data space. Program space is the section of memory that contains
the program instructions and any immediate data operands residing in the
instruction stream. Data space is the section of memory that contains the
program data. Data items in the instruction stream can be accessed with
the program counter relative addressing modes.

3.3.1 Instruction Format

Instructions consist of exactly one word (i.e. 32-bit). Figure 3.3 illustrates
the general composition of every type of instruction.

An instruction specifies the function to be performed with an operation
code (i.e. opcode) and defines the location of every operand.

Possible operands are:

• register identifiers.

• immediate values

• address values

The most significant two bits of every instruction (bits 31 and 30) are
always set to a value that depends on which is the instruction format. For
example, as we can see in figure 3.3 ternary instructions will always have
those bits set to ‘0’.

Every register identifier is defined as a five bit value that represent the
general register number. For example, register R3 will be encoded in the
following binary format: ‘00011’.

Registers can be either directly or indirectly addressed only in ternary
instructions. However, only the destination register RDEST and the second
source register RSOURCE2 can be indirectly addressed.

37

0 0

0 1

1 0

1 1

Ternary Instruct ion

Binary Instruct ion

Unary Instruct ion

Jump Instruction

31 30 29 26 25 21 20 16 15 11 10 0

31 30 29 26 25 21 20 16 15 0

31 30 29 26 25 21 20 0

31 30 29 26 25 20 0

19

19

RDEST

RDEST

RDEST RSOURCE1

RSOURCE

RSOURCE2Opcode

Opcode

Opcode

Opcode

Immedia te va lue

Immedia te address

Immedia te address

FLAGS

Figure 3.3: Instruction Formats

38

In ternary instructions these information are encoded inside the flag

bits(the 11 less significant bits of the instruction word). Flag bits format is
shown in figure 3.4.

Unused

10 4 3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

1---

1

1

1

- - -

- - -

- - -

Bitmask for SIGN

Bitmask for
INDIRECT_RSOURCE2

Bitmask for CARRY

Bitmask for
INDIRECT_RDEST

Figure 3.4: Function bits

If the bit ‘CARRY’ is set to 1, the result of the binary operation between
RSOURCE1 and RSOURCE2 is incremented by 1.

If the bit ‘SIGN’ is set to 1, MACE treats the values stored in RSOURCE1
and RSOURCE2 as signed integers.

The bit ‘INDIRECT RDEST’ is set to 1 if the destination register is
indirectly addressed.

The bit ‘INDIRECT RSOURCE2’ is set to 1 if the ‘RSOURCE2’ register
is indirectly addressed.

In figure 3.5 is shown an example for a ‘‘ADD (R3) R1 (R2)’’ instruc-
tion.

3.4 Instruction Set

Instructions are listed by mnemonic. The information provided about each
instruction is: its assembler syntax, its description in words, the effect its
execution has on the condition codes (i.e. the effect on the value stored
inside the PSW register), and the addressing modes it may take.

The effect of an instruction on the PSW is specified by the following codes:

• U The state of the bit is undefined (i.e., its value cannot be predicted)

39

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

031

0 0

31 30

0 0 0 0

29 26

0 0 0 1 1

25

21

0 0 0 0 1

20 16

0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0

0

15 11

10

Ternary Instruction

Opcode "ADD"

Register R3

Register R1

Register R2

25

RDEST (R3) and RSOURCE1 (R2)
are indirectly addressed

Decoded Instruction : ADD (R3) R1 (R2)

Figure 3.5: An example of encoded ADD instruction

40

• - The bit remains unchanged by the execution of the instruction

• * The bit is set or cleared according to the outcome of the instruction.

the legal source and destination addressing modes are specified by their
assembly language syntax. The following notation is used when we refers to
registers and immediate values:

• Rn A Register location.

• imm Immediate value which may be 16 bit or 32 bits, depending on the
instruction.

3.4.1 Ternary Instructions

ADD Add binary
Syntax: ADD [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] + [RSource2]
Binary Opcode: ‘0000’

Description: Add the source operand ‘Rsource1’ to
‘Source2’ and store the result in the
destination location ‘Rdest’.

Condition codes: N Z V C

* * * *

SUB Subtract binary
Syntax: SUB [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘0001’

Description: Subtract the
‘Rsource1’ to
the result in the
‘Rdest’.

Condition codes: N Z V C

* * * *

ANDL AND logical
Syntax ANDL [Rdest] [RSource1] [RSource2]
Semantics [Rdest] ← [RSource1].[RSource2]
Binary Opcode: ‘0010’

Description: Performs an AND between the source
operand ‘Rsource1’ and the ‘Source2’
operand and store the result in the
destination location ‘Rdest’.

Condition codes: N Z V C

* * 0 0

ORL OR logical
Syntax ORL [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘0011’

Description: Performs an OR
operand ‘Rsource1’
operand and store
destination location

Condition codes: N Z V C

* * 0 0

41

EORL Exclusive OR logical
Syntax EORL [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] ⊕ [RSource2]
Binary Opcode: ‘0100’

Description: EOR (exclusive or) the source operand
‘Rsource1’ with ‘Rsource2’ and store
the result in the destination location
‘Rdest’.

Condition codes: N Z V C

* * 0 0

ANDB AND bit by bit
Syntax ANDB [Rdest] [RSource1]
Semantics [Rdest] ← [RSource1]
Binary Opcode: ‘0101’

Description: ANDB the source
to the ‘Rsource2’
the result in the
‘Rdest’.

Condition codes: N Z V C

* * 0 0

ORB OR bit by bit
Syntax ORB [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] | [RSource2]
Binary Opcode: ‘0110’

Description: ORB the source operand ‘Rsource1’
to the ‘Rsource2’ operand, and store
the result in the destination location
‘Rdest’.

Condition codes: N Z V C

* * 0 0

EORB Exclusive OR bit
Syntax EORB [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘0111’

Description: EORB (exclusiv
operand ‘Rsource1’
‘Rsource2’ operand
result in the
‘Rdest’.

Condition codes: N Z V C

* * 0 0

42

MUL MUL binary
Syntax MUL [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] * [RSource2]
Binary Opcode: ‘1000’

Description: Multiply the 32-bit ‘RSource1’
operand by the 32-bit ‘RSource2’
operand and store the result in the
destination ‘Rdest’. Both the sources
and destination are 32-bit word
values.

Condition codes: N Z V C

* * * *

DIV DIV binary
Syntax DIV [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘1001’

Description: Divide the 32-bit
by the 32-bit ‘RSource2’
store the result
‘Rdest’. Both the
nation are 32-bit

Condition codes: N Z V C

* * * *

SHR Binary Shift to Right
Syntax SHR [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] ≫ [RSource2]
Binary Opcode: ‘1011’

Description: SHR Performs a binary ‘shift to right’
on the 32-bit ‘RSource1’ operand. The
number of bits shifted is stored into
the 32-bit ‘RSource2’ operand. The
result of the shift operation is stored
in the destination register ‘Rdest’.

Condition codes: N Z V C

* * * *

SHL Binary Shift to L
Syntax SHL [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘1010’

Description: SHL Performs a
on the 32-bit ‘RSource1’
number of bits
the 32-bit ‘RSource2’
result of the shift
in the destination

Condition codes: N Z V C

* * * *

43

ROTL Rotate binary
Syntax ROTL [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← [RSource1] rotated by

<[RSource2]> to Left
Binary Opcode: ‘1100’

Description: Rotate the bits of the operand to the
Left. A rotate operation is circular in
the sense that the bit shifted out at
one end is shifted into the other end.
That is, no bit is lost or destroyed by
a rotate. Actually the ROTL instruc-
tion is not supported by the current
architecture; it is translated as a NOP
operation

Condition codes: N Z V C

* * 0 *

ROTR Rotate binary
Syntax ROTR [Rdest] [RSource1]
Semantics: [Rdest] ← [RSource1]

<[RSource2]> to
Binary Opcode: ‘1101’

Description: Rotate the bits
right. A rotate op
the sense that the
one end is shifted
That is, no bit is
a rotate. Actually
tion is not supp
architecture; it is
operation

Condition codes: N Z V C

* * 0 *

NEG Negate
Syntax NEG [Rdest] [RSource1] [RSource2]
Semantics: [Rdest] ← 0 - [RSource2]

RSource1 is unused.
Binary Opcode: ‘1110’

Description: Negate the value of ‘RSource2’ and
store the result into ‘RDest’.

Condition codes: N Z V C

* * * *

SPCL Special opcode
Syntax SPCL [Rdest] [RSource1]
Semantics: Undefined at the
Binary Opcode: ‘1111’
Description: Will be used for
Condition codes: N Z V C

* * * *

44

3.4.2 Binary Instructions

ADDI Add with Immediate operand
Syntax: ADDI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest]← [RSource1] + #[Immediate]
Binary Opcode: ‘0000’

Description: Add the source operand ‘Rsource1’
to the ‘immediate’ value and store
the result in the destination location
‘Rdest’.

Condition codes: N Z V C

* * * *

SUBI Subtract with Imme
Syntax: SUBI [Rdest] [RSource1]

ate]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘0001’

Description: Subtract the
‘Rsource1’ to the
and store the result
location ‘Rdest’.

Condition codes: N Z V C

* * * *

ANDLI AND with Immediate operand
Syntax ANDLI [Rdest] [RSource1] #[Immedi-

ate]
Semantics [Rdest] ← [RSource1].#[Immediate]
Binary Opcode: ‘0010’

Description: Performs an AND between the source
operand ‘Rsource1’ and the ‘Immedi-
ate’ operand and store the result in the
destination location ‘Rdest’.

Condition codes: N Z V C

* * 0 0

ORLI OR with Immediate
Syntax ORLI [Rdest] [RSource1]

ate]
Semantics: [Rdest]← [RSource1]
Binary Opcode: ‘0011’

Description: Performs an OR
operand ‘Rsource1’
ate’ operand and
destination location

Condition codes: N Z V C

* * 0 0

45

EORLI Exclusive OR with Immediate operand
Syntax EORLI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest]← [RSource1] ⊕ #[Immediate]
Binary Opcode: ‘0100’

Description: EOR (exclusive or) the source operand
‘Rsource1’ with ‘Immediate’ and store
the result in the destination location
‘Rdest’.

Condition codes: N Z V C

* * 0 0

ANDBI AND bit by
operand

Syntax ANDBI [Rdest] [RSource1]
ate]

Semantics [Rdest]← [RSource1]
Binary Opcode: ‘0101’

Description: ANDBI the source
to the ‘Immediate’
the result in the
‘Rdest’.

Condition codes: N Z V C

* * 0 0

ORBI OR bit by bit with Immediate operand
Syntax ORBI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest] ← [RSource1] | #[Immediate]
Binary Opcode: ‘0110’

Description: ORBI the source operand ‘Rsource1’
to the ‘Immediate’ operand, and store
the result in the destination location
‘Rdest’.

Condition codes: N Z V C

* * 0 0

EORBI Exclusive OR bit
operand

Syntax EORBI [Rdest] [RSource1]
ate]

Semantics: [Rdest]← [RSource1]
Binary Opcode: ‘0111’

Description: EORBI (exclusiv
operand ‘Rsource1’
ate’ operand and
destination location

Condition codes: N Z V C

* * 0 0

46

MULI MUL binary with Immediate operand
Syntax MULI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest] ← [RSource1] * #[Immediate]
Binary Opcode: ‘1000’

Description: Multiply the 32-bit ‘RSource1’
operand by the ‘Immediate’ operand
and store the result in the destination
‘Rdest’. Both the sources and destina-
tion are 32-bit word values exception
made for the immediate value which
is always 16 bit long.

Condition codes: N Z V C

* * * *

DIVI DIV binary with
Syntax DIVI [Rdest] [RSource1]

ate]
Semantics: [Rdest] ← [RSource1]
Binary Opcode: ‘1001’

Description: Divide the 32-bit
by ‘Immediate’ op
result in the destination
the sources and
word values exception
immediate value
long.

Condition codes: N Z V C

* * * *

SHRI Binary Shift to Right
Syntax SHRI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest] ← [RSource1] ≫ #[Immedi-

ate]
Binary Opcode: ‘1011’

Description: SHR Performs a binary ‘shift to right’
on the 32-bit ‘RSource1’ operand. The
number of bits shifted is given by the
value of the Immediate operand ‘Im-
mediate’. The result of the shift oper-
ation is stored in the destination reg-
ister ‘Rdest’.

Condition codes: N Z V C

* * * *

SHLI Binary Shift to L
Syntax SHLI [Rdest] [RSource1]

ate]
Semantics: [Rdest] ← [RSource1]

ate]
Binary Opcode: ‘1010’

Description: SHL Performs a
on the 32-bit ‘RSource1’
number of bits shifted
value of the Immediate
mediate’. The result
ation is stored in
ister ‘Rdest’.

Condition codes: N Z V C

* * * *

47

ROTLI Rotate binary
Syntax ROTLI [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest] ← [RSource1] rotated by

<#[Immediate]> to Left
Binary Opcode: ‘1100’

Description: Rotate the bits of the operand to the
Left. A rotate operation is circular in
the sense that the bit shifted out at
one end is shifted into the other end.
That is, no bit is lost or destroyed by
a rotate Actually the ROTLI instruc-
tion is not supported by the current
architecture; it is translated as a NOP
operation

Condition codes: N Z V C

* * 0 *

ROTRI Rotate binary
Syntax ROTRI [Rdest] [RSource1]

ate]
Semantics: [Rdest] ← [RSource1]

<#[Immediate]>
Binary Opcode: ‘1101’

Description: Rotate the bits
right. A rotate op
the sense that the
one end is shifted
That is, no bit is
a rotate Actually
tion is not supp
architecture; it is
operation

Condition codes: N Z V C

* * 0 *

NOTL Logical complement
Syntax NOT [Rdest] [RSource1] #[Immedi-

ate]
Semantics: [Rdest] ← ! [RSource1]

Immediate is unused.
Binary Opcode: ‘1110’

Description: Perform a logical NOT operation on
the value of ‘RSource1’. The result is
stored into ‘RDest’.

Condition codes: N Z V C

* * 0 0

NOTB Binary complement
Syntax NOTB [Rdest] [RSource1]

ate]
Semantics: [Rdest] ← ∼[RSource1]

Immediate is unused.
Binary Opcode: ‘1110’

Description: Perform a binary
the value of ‘RSource1’.
stored into ‘RDest’.

Condition codes: N Z V C

* * 0 0

48

3.4.3 Unary Instructions

NOP No Operation
Syntax NOP
Binary Opcode: ‘0000’

Description: No Operation performed. This in-
struction has no effect on the machine
internal state

Condition codes: N Z V C

- - - -

MOVA Move Address to Register Location
Syntax MOVA [RDest] [Address]
Semantics: [Rdest] ← [Address]
Binary Opcode: ‘0001’

Description: Move the value of [Address] into
‘RDest’. Address is a 20-bit value

Usage: MOVA instructions are typically used
when we works on address (pointers)
or arrays.

Condition codes: N Z V C

- - - -

49

JSR Jump To Subroutine
Syntax JSR [RDest] [Address]
Semantics: Jump to the subroutine at address

[Address]. Store the return value
of the subroutine inside the register
‘RDest’.

Binary Opcode: ‘0010’

Description: This instruction implements a jump to
subroutine. Actually this opcode is
not supported.

Condition codes: N Z V C

* * * *

RET Return from Subroutine
Description: RET is not supported by the current

architecture. Actually a RET instruc-
tion is translated as a HALT instruc-
tion.

Binary Opcode: ‘0011’

Condition codes: N Z V C

- - - -

LOAD Fill a register with a value read from
memory

Syntax LOAD [RDest] [Address]
Semantics: [Rdest] ← *[Address]
Binary Opcode: ‘0100’

Description: Load the value previously stored at
‘Address’ memory location inside the
register ‘Rdest’

Condition codes: N Z V C

- - - -

50

STORE Spill a value
Syntax STORE [RSource] [Address]
Semantics: *[Address] ← [RSource]
Binary Opcode: ‘0101’

Description: Store the value of ‘Rsource’ to the ‘Ad-
dress’ memory location

Condition codes: N Z V C

- - - -

HALT Halt the machine processor
Binary Opcode: ‘0110’

Condition codes: N Z V C

- - - -

Scc Set according to condition ‘cc’
Syntax Scc [Rdest] [Address]
Semantics (pseudo-code): IF cc == 1 THEN [Rdest]← 1; ELSE

[Rdest] ← 0.

Note: Condition ‘cc’ is computed starting
from the value of the PSW register. For
example: instruction ‘SEQ Rx’ stores
1 into Rx if the bit ‘N’ of the status
register PSW is set. Otherwise Rx is
set to zero. C,N,V,Z refer to the bits
of the status register. For example: C

refers to the carry bit of the PSW reg-
ister.
Address is unused.

Possible values for ‘cc’:
EQ

GE

GT

LE

LT

NE

Description:

51

Binary Op-codes:
SEQ ‘0111’
SGE ‘1000’
SGT ‘1001’
SLE ‘1010’
SLT ‘1011’
SNE ‘1100’

Condition codes: N Z V C

0 * 0 0

READ Read from standar
value

Syntax READ [RSource]
Semantics: Read from input

teger value, and
‘RSource’. Address

Binary Opcode: ‘1101’

Description: This instruction
from standard
Actually the READ
plemented with
declaration of ‘scanf
header file of the

Condition codes: N Z V C

* * * *

WRITE Write to standard output an integer
value

Syntax WRITE [RSource] [Address]
Semantics: Write to standard output a 32-

bit signed integer value stored into
Rsource. Address is unused.

Binary Opcode: ‘1110’

Description: This instruction writes to standard
output a 32-bit value. Actually the
WRITE instruction is implemented
with a printf. [See the declaration
of ‘printf’ in the stdio.h header file
of the C standard library].

Condition codes: N Z V C

- - - -

52

3.4.4 Jump Instructions

Bcc Branch on condition cc

Syntax Bcc [Label]
Semantics (pseudo-code): IF cc == 1 THEN

[PC] ← [PC] + Displacement;
Displacement is the distance between
the current PC and the address associ-
ated with the given ‘Label’

Note: Condition ‘cc’ is analyzed by taking
into consideration the value of the PSW
register. For example: instruction
‘BEQ Label’ perform a branch to the
instruction labeled ‘label’ if the bit ‘N’
of the status register PSW is set. Oth-
erwise Rx is set to zero. C,N,V,Z refer
to the bits of the status register (PSW).
For example: C refers to the carry bit
of the PSW register.

Possible values for ‘cc’:
EQ set on equal;

cc ← Z
GE set on greater than or equal;

cc ← N.V + N .V
T branch always. The branch is always

‘taken’;
F This condition is never verified. Thus,

branch like this are never ‘taken’;
HI : Branch on higher than

cc ← C.Z
LS Branch on lower than or same;

cc ← C.Z
GT set on greater than;

cc ← N.V.Z + N .V .Z

53

LE set on less than or equal;
cc ← Z + N.V + N .V

LT set on less than;
cc ← N .V + N.V

NE set on not equal;
cc ← Z

CC Branch on carry clear;
cc ← C

CS Branch on carry set;
cc ← C

VC Branch on overflow clear;
cc ← V

VS Branch on overflow set;
cc ← V

BPL Branch on plus (i.e. positive);
cc ← N

BMI Branch on minus (i.e. negative);
cc ← N

54

Description: The specified condition code ‘cc’ is
tested. If the condition is true, the
program counter will be modified in
order to point to a specific labeled in-
struction.

Binary Opcodes:
BT ‘0000’
BF ‘0001’
BHI ‘0010’
BLS ‘0011’
BCC ‘0100’
BCS ‘0101’
BNE ‘0110’
BEQ ‘0111’
BVC ‘1000’
BVS ‘1001’
BPL ‘1010’
BMI ‘1011’
BGE ‘1100’
BLT ‘1101’
BGT ‘1110’
BLE ‘1111’

Condition codes: N Z V C

- - - -

55

