
ACSE: Advanced Compiler System
for Education

Giovanni Agosta and Andrea Di Biagio

ACSE: Advanced Compiler System for Education – p. 1

Summary
• The ACSE compiler
• The Assembler
• The MACE architecture

ACSE: Advanced Compiler System for Education – p. 2

ACSE

ACSE: Advanced Compiler System for Education – p. 3

Overview
• The Advanced Compiler System for

Education
• Compilation process
• The Language for Compiler Education
• Modules and libraries

ACSE: Advanced Compiler System for Education – p. 4

Compilation process

Lexical Analysis
Control Flow

 Analysis

Liveness
Analysis

Register
Allocation

Code Emission

Source Code Tokens Translated
Program

Control Flow Graph

Live Intervals Register
Assignment

Assembly

Syntax Directed
Translation

ACSE: Advanced Compiler System for Education – p. 5

Compilation process: Front-End
• Source file tokenized by the scanner (or lexer)
• The scanner is generated using Flex

• String of tokens processed by the parser
• ACSEparser: LALR(1), generated with

Bison

• Syntax Directed Translation
• Check the tokenized input for syntactic

correctness
• Execute semantic actions for each

recognized grammar rule

ACSE: Advanced Compiler System for Education – p. 6

Compilation process: Back-End
• Transform tokenized input to assembly

statements for the target machine
• The assembly produced uses an unlimited

number of registers!
• Liveness Analysis and Register Allocation

steps
• The assembly produced now uses a limited

number of registers!
• The assembly code is now written out
• The Assembler must now be invoked to

produce an object file
ACSE: Advanced Compiler System for Education – p. 7

Source Language:LanCE
• The Language for Compiler Education

(LanCE)
• Simple C-based syntax:
• Standard set of arithmetic/logic operations
• Reduced control flow (while/do-while, if)
• A single type: integer

ACSE: Advanced Compiler System for Education – p. 8

LanCE: Tokens
Token Regular Expression Token Regular Expression
DIGIT [0-9] ID [a-zA-Z_][a-zA-Z0-9_]*
LBRACE { RBRACE }
LSQUARE [RSQUARE]
LPAR (RPAR)
SEMI ; COLON :
PLUS + MINUS -
MUL_OP * DIV_OP /
MOD_OP % AND_OP &
OR_OP | NOT_OP !
ASSIGN = LT <
GT > SHL_OP ≪

SHR_OP ≫ EQ ==
NOTEQ != LTEQ <=

GTEQ >= ANDAND &&
OROR ‖ COMMA ,
DO do ELSE else
FOR for IF if
TYPE int WHILE while
RETURN return READ read
WRITE write

ACSE: Advanced Compiler System for Education – p. 9

LanCE: Grammar (1)
program : var_declarations statements
var_declarations : var_declarations var_declaration

| ε

var_declaration : TYPE declaration_list SEMI
declaration_list : declaration_list COMMA declaration

| declaration
declaration : IDENTIFIER ASSIGN NUMBER
statements : statements statement

| statement

ACSE: Advanced Compiler System for Education – p. 10

LanCE: Grammar (2)
statement : IDENTIFIER LSQUARE exp

RSQUARE ASSIGN exp SEMI
| IDENTIFIER ASSIGN exp SEMI
| if_statements
| if_statements ELSE code_block
| while_statements
| do_while_statements SEMI
| SEMI
| RETURN SEMI
| READ LPAR IDENTIFIER RPAR SEMI
|WRITE LPAR exp RPAR SEMI

code_block : statement
| LBRACE statements RBRACE

while_statements : WHILE LPAR exp RPAR code_block
do_while_statements : DO code_block WHILE LPAR exp

RPAR
if_statements : IF LPAR exp RPAR code_block

ACSE: Advanced Compiler System for Education – p. 11

LanCE: Grammar (3)
exp : NUMBER

| IDENTIFIER
| IDENTIFIER LSQUARE exp
RSQUARE
| NOT_OP NUMBER
| NOT_OP IDENTIFIER
| exp AND_OP exp
| exp OR_OP exp
| exp PLUS exp
| exp MINUS exp
| exp MUL_OP exp
| exp DIV_OP exp
| exp LT exp
| exp GT exp

| exp GT exp
| exp EQ exp
| exp NOTEQ exp
| exp LTEQ exp
| exp GTEQ exp
| exp SHL_OP exp
| exp SHR_OP exp
| exp ANDAND exp
| exp OROR exp
| LPAR exp RPAR
| MINUS exp

ACSE: Advanced Compiler System for Education – p. 12

LanCE: Example
int value, fact; / * variables declarations * /

read(value); / * read from standard input the

* value of ’value’ * /

if (value < 0) { / * invalid input * /

write(-1);

return;

}

fact = 1; / * initialize ’fact’ * /

while(value > 0) { / * compute the factorial of value * /

fact = value * fact;

value = value - 1;

}

write(fact); / * write the result to stdout * /

ACSE: Advanced Compiler System for Education – p. 13

ACSE SDT: Overview
• Goal: gather all useful information about each

statement of the source program
• Each instruction is typically translated into

one or more assembly instructions
• Global compiler environment

t_program_infos :
• Used to store the collected information,

including the assembly instructions
• Defined in axe_engine.h .

• Data structures for instructions and directives
are defined in axe_struct.h

ACSE: Advanced Compiler System for Education – p. 14

ACSE SDT: Program Informa-
tion
t_program_infos contains:
• An instance of a symbol table
• An instance of label manager
• A list of program variables
• A list of instruction and assembler directives.

ACSE: Advanced Compiler System for Education – p. 15

Assembly instructions
An assembly instruction is described by:

• An operation identifier (for example: ‘SUB’);

• A set of instruction parameters which depend on the instruction
type;

• A user comment (optional);

• A label identifier (optional).

Valid instruction parameters are:

• Register identifiers;

• Immediate values (signed integer values);

• Addresses (for example: label identifiers).

ACSE: Advanced Compiler System for Education – p. 16

Assembly instructions: Exam-
ple (1)
• Assembly ADD instruction: ternary instruction ADD R3 R1 R2

• Sum ‘R1’ and ‘R2’

• Stores the result in ‘R3’

• The keyword “ADD” identifies the operation

• Number of parameters depends on instruction type
• Ternary instructions accept only registers identifiers
• Register identifier: alias for a machine general-purpose

register

• Additional information:
• User comments: for debugging purposes
• Labels: L1: ADD R3 R1 R2

ACSE: Advanced Compiler System for Education – p. 17

Assembly directives
A Assembler directive is defined as follows:
• Directive type identifier (e.g.: .WORD)
• Value associated with the directive
• Optional label identifier

Example of assembler directive: .WORD 0

ACSE: Advanced Compiler System for Education – p. 18

Axe Variables
• “Variable” item: t_axe_variable

• Symbol Table: within t_program_infos

t_axe_variable defines:
• A data type (for example: INTEGER);
• An Array Size (defined only if the variable is

an array);
• An initial value;
• A variable identifier;

ACSE: Advanced Compiler System for Education – p. 19

Axe Variable example
• Source program: variable “var ” as integer with initial value ‘100’
• int var = 100;

• t_axe_variable for “var”:
• INTEGERas data type;
• 100 as initial value;
• the string “var ” as variable identifier.

• t_axe_variable instance used to produce .WORDand/or
.SPACE assembler directives
• The t_axe_variable defined for “var” produces: .WORD

100

ACSE: Advanced Compiler System for Education – p. 20

Symbol Table
• Symbol table: a data structure used at

translation time to keep track of source
program variables.

• The Symbol Table contains, for each variable
• ID: variable identifier
• Type: data type of the variable
• A Register identifier.

• The register identifier refers to the register
location where the variable is currently stored.

ACSE: Advanced Compiler System for Education – p. 21

Symbol Table: Example
Source Program Assembly Comments
int value, fact; .DATA /* variables declarations */

L0: .WORD 0 /* initialize 4 bytes of data to 0 */
L1: .WORD 0 /* initialize 4 bytes of data to 0 */

read(value); .TEXT /* start of a block of code */
READ R1 0 /* read from standard input */

if (value < 0) { SUBI R3 R1 #0 /* sub immediate */
SLT R3 0 /* set R3 on less than zero */
BEQ L2 /* ‘branch on equal’ to label L2 */

write(-1); ADDI R4 R0 #-1 /* add immediate */
WRITE R4 0 /* write R4 to standard output */

return; } HALT /* stop the program execution */
fact = 1; L2: ADDI R2 R0 #1
while(value > 0) { L3: SUBI R5 R1 #0

SGT R5 0 /* set R3 on ‘less than zero’ */
BEQ L4 /* ‘branch on equal’ to label L4 */

fact = value * fact; MUL R6 R1 R2 /* binary mult. operation */
ADDI R2 R6 #0

value = value - 1; } SUBI R7 R1 #1
ADDI R1 R7 #0
BT L3 /* ‘branch true’ to label ‘L3’ */

write(fact); L4: WRITE R2 0 /* write R2 to standard output */
HALT /* stop the program execution */

ACSE: Advanced Compiler System for Education – p. 22

Symbol Table: Example
Content of the Symbol Table for the example:

Variable Identifier Type Register Location

value INTEGER R1

fact INTEGER R2

ACSE: Advanced Compiler System for Education – p. 23

AXE API: Symbol Table
• symbol_table.h: functions to manipulate

the symbol table
• look up a symbol
• define and insert a new symbol
• set the register location information of a

symbol
• retrieve the register location associated

with a symbol
• axe_struct.h: data structures used by the

parser (defined in Acse.y)

ACSE: Advanced Compiler System for Education – p. 24

AXE API: Label Manager
• Label Manager (axe_labels.h): functions

to work with labels
• reserveLabelID : user code requires the

creation of a new label
• fixLabelID : assign a given label to an

instruction

ACSE: Advanced Compiler System for Education – p. 25

AXE API: Code Generation
• axe_gencode.h : functions to generate assembly instructions

• E.g.: gen_add_instruction is used to create an ADD

• axe_array.h : functions to generate load/store instructions
from/to array elements

• E.g.: loadArrayElement that takes as input:
• Input: an array variable identifier
• Input: an array subscript identifying an array element.
• Output: a register location identifier that holds the value of the

specified array element

ACSE: Advanced Compiler System for Education – p. 26

AXE API: Miscellanea
axe_engine.h defines the t_program_infos data structure, plus
functions to

• initialize an instance of t_program_infos

• add an assembly instruction to a t_program_infos

• create a variable and assign it to a t_program_infos

• request for a free register location (getNewRegister)

• write an assembly file as output (writeAssembly)

ACSE: Advanced Compiler System for Education – p. 27

AXE API: Expressions
• axe_structs.h : expression type t_axe_expression , with the

following fields:
• A value: a register identifier or an immediate value
• An expression type: either “register” or “immediate value”

• Functions used to generate instructions for expressions:
• perform_binary_comparison : comparison expressions
• perform_bin_numeric_op : arithmetic expressions
• Both take two expressions as input and return as expression

• axe_utils.h

• get_symbol_location : wrapper for the functions in
symbol_table.h

• Look up the register for a variable, if not present get a new one

ACSE: Advanced Compiler System for Education – p. 28

Semantic Actions Examples
Three examples of bison semantic actions:
• Arithmetic expression
• Comparison expression
• do-while statement

ACSE: Advanced Compiler System for Education – p. 29

Arithmetics Expression (1)
• LanCE Grammar rule:
exp :

| exp AND_OP exp

• Source code: “a & b”

• Semantic action: $$ =
perform_bin_numeric_op (program,
$1, $3, ANDB);

ACSE: Advanced Compiler System for Education – p. 30

Arithmetics Expression (2)
• Query the symbol table to retrieve the register

locations associated with both a and b.
• get_symbol_location

• Generate an assembly ANDBinstruction
• gen_andb_instruction

• perform_bin_numeric_op can be used to
perform all these operations

ACSE: Advanced Compiler System for Education – p. 31

Arithmetics Expression (3)
gen_andb_instruction requires five parameters:

• Pointer to t_program_infos ;

• A destination register identifier;

• Two register identifiers as parameters for the ANDBinstruction;

• The addressing mode:
• CG_DIRECT_ALL

• CG_INDIRECT_ALL

• CG_INDIRECT_DEST

• CG_INDIRECT_SOURCE

ACSE: Advanced Compiler System for Education – p. 32

Arithmetics Expression (3)
• perform_bin_numeric_op takes the following parameters:
• Pointer to t_program_infos

• Two t_axe_expression , one for each operand
• An operation identifier (e.g.: ANDB)

• Valid binary operation identifiers:
• ADD

• ANDB

• ORB

• SUB

• MUL

• DIV

ACSE: Advanced Compiler System for Education – p. 33

Comparison Expression (1)
• LanCE Grammar rule:
exp :

| exp LT exp

• Source code: “a < b”

• Semantic action: $$ =
perform_binary_comparison
(program, $1, $3, _LT_);

ACSE: Advanced Compiler System for Education – p. 34

Comparison Expression (2)
• perform_binary_comparison is used to implement the

semantic action

• perform_binary_comparison takes the following parameters:
• Pointer to t_program_infos

• Two t_axe_expression , one for each operand
• A condition code (e.g.: _LT_)

• Valid condition codes:
• _LT_

• _GT_

• _EQ_

• _NOTEQ_

• _LTEQ_

• _GTEQ_
ACSE: Advanced Compiler System for Education – p. 35

Do-while Statement (1)
do_while_statements : DO

{

$1 = reserveLabel(program);

fixLabel(program, $1);

}

code_block WHILE LPAR exp RPAR

{

gen_bne_instruction (program, $1, 0);

};

ACSE: Advanced Compiler System for Education – p. 36

Do-while Statement (1)
• Assign a label to the loop body first instruction

via reserveLabel and fixLabel

• Check if exp is different from zero
• If so, the control jumps back to the first

instruction of the loop body (code_block)
• Otherwise the control get out from the loop.

• Use gen_bne_instruction to generate a
conditional branch instruction

ACSE: Advanced Compiler System for Education – p. 37

Assembler

ACSE: Advanced Compiler System for Education – p. 38

Assembler workflow
• Initialize internal data structures
• Check input code for syntactic errors
• Translate labels to memory addresses
• Translate assembly instruction to machine

code
• Write out the object file

ACSE: Advanced Compiler System for Education – p. 39

Assembly format
• An instruction specifies an operation type and

a list of operands.
• Operand types:
• register identifiers
• immediate values
• address values

• In ternary instructions the destination register
and the second source register can be
indirectly addressed.

ACSE: Advanced Compiler System for Education – p. 40

Assembly format: Notation
• Rn Register ‘n’
• Rdest Destination Register
• Rsource1 First source operand
• Rsource2 Second source operand
• (Rn) Indirect register ‘n’
• #imm Immediate value, where imm is an

integer value.

ACSE: Advanced Compiler System for Education – p. 41

Instructions and Directives
• Assembler directives use a subset of the GNU

assembler directives

• Instructions come in four formats:
• Ternary instructions
• Binary instructions
• Unary instructions
• Branch instructions

ACSE: Advanced Compiler System for Education – p. 42

Object file format

’L’ ’F’ ’C’ ’M’

4 bytes
(currently unused)

Machine code instructions

ACSE: Advanced Compiler System for Education – p. 43

Ternary Instructions: Arith-
metics

ADD Add binary
Syntax: ADD Rdest RSource1

RSource2
Examples Semantics
ADD R2 R1 R3 R2← R1 + R3
ADD R2 R1 (R3) R2← R1 + [R3]
ADD (R2) R1 (R3) [R2]← R1 + [R3]

Arithmetic Instructions: ADD, SUB, MUL, DIV

ACSE: Advanced Compiler System for Education – p. 44

Ternary Instructions: Logic &
Bitwise

ANDL AND logical
Syntax: ANDL Rdest RSource1

RSource2
Examples Semantics
ANDL R2 R1 R3 R2← R1 && R3
ANDL R2 R1 (R3) R2← R1 && [R3]
ANDL (R2) R1 (R3) [R2]← R1 && [R3]

Logical ANDL, ORL, EORL

Bitwise ANDB, ORB, EORB
ACSE: Advanced Compiler System for Education – p. 45

Ternary Instructions: Shift &
Rotate

SHR Binary Shift to Right
Syntax: SHR Rdest RSource1

RSource2
Examples Semantics
SHR R2 R1 R3 R2← R1≫ R3
SHR R2 R1 (R3) R2← R1≫ [R3]
SHR (R2) R1 (R3) [R2]← R1≫ [R3]

Shift SHR, SHL

Rotate ROTR, ROTL
ACSE: Advanced Compiler System for Education – p. 46

Ternary Instructions: NEG

NEG Negate
Syntax: NEG Rdest RSource1

RSource2
Examples Semantics
NEG R2 R1 R3 R2← - R3
NEG R2 R1 (R3) R2← - [R3]
NEG (R2) R1 (R3) [R2]← - [R3]
Note: RSource1 is unused.

ACSE: Advanced Compiler System for Education – p. 47

Binary Instructions: Arithmetics

ADDI Add with Immediate operand
Syntax: ADDI Rdest RSource1 #Im-

mediate
Example Semantics
ADDI R2 R1 #VAL R2← R1 + VAL

Arithmetic Instructions: ADDI, SUBI, MULI, DIVI

ACSE: Advanced Compiler System for Education – p. 48

Binary Instructions: Logic &
Bitwise

ANDLI AND with Immediate operand
Syntax: ANDLI Rdest RSource1 #Im-

mediate
Example Semantics
ANDLI R2 R1 #VAL R2← R1 && VAL

Logical ANDL, ORL, EORL

Bitwise ANDB, ORB, EORB

ACSE: Advanced Compiler System for Education – p. 49

Binary Instructions: Shift & Ro-
tate

SHRI Binary Shift to Right
Syntax: SHRI Rdest RSource1 #Im-

mediate
Example Semantics
SHRI R2 R1 #VAL R2← R1≫ VAL

Shift SHRI, SHLI

Rotate ROTRI, ROTLI

ACSE: Advanced Compiler System for Education – p. 50

Binary Instructions: NOTL and
NOTB

NOTL Logical complement
Syntax: NOT Rdest RSource1 #Im-

mediate
Example: Semantics
NOTL R2 R1 #VAL R2← ! R1
Note: VAL is unused.

NOTB Binary complement
Syntax: NOTB Rdest RSource1 #Im-

mediate
Example Semantics
NOTB R2 R1 #VAL R2← ∼ R1

ACSE: Advanced Compiler System for Education – p. 51

Unary Instructions: NOP, HALT
and MOVA

NOP No Operation
Syntax: NOP
HALT Halt the machine processor
MOVA Move Address to Register Lo-

cation
Syntax: MOVA RDest Address
Example Semantics
MOVA R2 L1 R2 ← L1 (where L1 is a La-

bel)

ACSE: Advanced Compiler System for Education – p. 52

Binary Instructions: LOAD and
STORE

LOAD Fill a register with a value read
from memory

Syntax: LOAD RDest Address
Example Semantics
LOAD R2 L1 R2← [L1] (where L1 is a Label)
STORE Spill a value
Syntax: STORE RSource Address
Example Semantics
STORE R2 L1 L1← R2 (where L1 is a Label)

ACSE: Advanced Compiler System for Education – p. 53

Binary Instructions: SEQ, SGE,
etc.

Scc Set according to condition ‘cc’
Syntax: Scc Rdest Address
Semantics: IF cc == 1 THEN Rdest ← 1;

ELSE Rdest← 0.
Note: Address parameter is unused.
Possible values for ‘cc’:
EQ set on equal;
GE set on greater than or equal;
GT set on greater than;
LE set on less than or equal;
LT set on less than;
NE set on not equal;
Description: ‘cc’ is tested: if the condition is true, ‘Rdest’ is set to one, otherwise to

zero.
Example: SGT R2 0 Set the value of R2 to 1 if the condition GT is verified; 0 otherwise.

ACSE: Advanced Compiler System for Education – p. 54

Binary Instructions: READ and
WRITE

READ Read from standard input an integer value
Syntax: READ RSource Address
Example Semantics
READ R2 0 Read from input an 32-bit signed integer

value, and store the value to ‘R2’.
Note: Address parameter is unused.

WRITE Write to standard output an integer value
Syntax: WRITE RSource Address
Example Semantics
WRITE R2 0 Write to standard output a 32-bit signed inte-

ger value stored into R2.
Note: Address parameter is unused.

ACSE: Advanced Compiler System for Education – p. 55

Jump Instructions

Bcc Branch on condition cc
Syntax: Bcc Label
Semantics: IF cc == 1 THEN

jump to label Label .
Description: ‘cc’ is tested: if the condition is

true, the PC is set to the label ad-
dress.

Examples:
BEQ L1 Branch to L1 on “equal to zero”
BT L3 Always branch to L3
BLT L2 Branch to L2 on “less than zero”

ACSE: Advanced Compiler System for Education – p. 56

Condition Codes (1)

EQ Branch on equal;
GE Branch on greater than or equal;
T Branch always;
F Never branch;
HI Branch on higher than
LS Branch on lower than or same;
GT Branch on greater than;
LE Branch on less than or equal;

ACSE: Advanced Compiler System for Education – p. 57

Condition Codes (2)

LT Branch on less than;
NE Branch on not equal;
CC Branch on carry clear;
CS Branch on carry set;
VC Branch on overflow clear;
VS Branch on overflow set;
BPL Branch on plus (i.e. positive);
BMI Branch on minus (i.e. negative);

ACSE: Advanced Compiler System for Education – p. 58

Assembler Directives
.data Beginning of a block of data direc-

tives
.text Beginning of a block of instructions
.word Reserve and set a memory word

(32-bit) in the data segment
.space Reserve a given number of bytes

into the data segment

ACSE: Advanced Compiler System for Education – p. 59

Assembler Directives:.word
Reserve and set a memory word (32-bit) in the
data segment
Syntax: .word VAL
Semantics: Reserve a 32-bit memory location

inside the data segment and set
the starting value of the location to
VAL

Examples:
.word 5 reserve a word, set its content to 5
.word 0 reserve a word, set its content to 0

ACSE: Advanced Compiler System for Education – p. 60

Assembler Directives:.space
Reserve (but not initialize) a given number of
bytes into the data segment
Syntax: .space VAL
Semantics: Reserve VAL (contiguous) bytes

inside the data segment.
Examples:
.space 8 5 contiguous bytes reserved
.space 32 32 contiguous bytes reserved

ACSE: Advanced Compiler System for Education – p. 61

MACE

ACSE: Advanced Compiler System for Education – p. 62

MACE Architecture
M e m o r y

Code Segment

Data Segment

R0

R1

R2

.

.

.

.

.

.

.

R30

R31PC

PSW

Registers

ACSE: Advanced Compiler System for Education – p. 63

MACE Bootstrap
• Test if the object file exists and is readable
• Set machine registers (including PC) to zero
• Resere a 2Kb block of memory (code and

data segments)
• Load machine code from object file to code

segment
• Load data from object file to data segment

ACSE: Advanced Compiler System for Education – p. 64

MACE Execution Loop
• Repeat:
• fetch the next instruction according to PC
• decode the fetched instruction
• execute the instruction
• update the content of the register file
• update the value of PC
• update the value of PSW

• Until an HALT instruction is encountered.

ACSE: Advanced Compiler System for Education – p. 65

MACE Register File
• 32 General-Purpose 32-Bit registers: R0 -

R31
• Note that R0 is wired to 0!

• 32-Bit Program Counter (PC)
• 32-Bit Status Register (PSW)

ACSE: Advanced Compiler System for Education – p. 66

MACE Processor Status Word

CN Z OUnused bits

3 031

• N (Negative): set if the most significant bit of the result of an
instruction is set to 1; cleared otherwise.

• Z (Zero): set if the result of an instruction is equal to zero; cleared
otherwise.

• V (Overflow): set only if an arithmetic overflow occurs implying
that the result cannot be represented in the operand size.

• C (Carry): set if a carry out of the most significant bit of the
operand occurs for an addition, or if a borrow occurs in a
subtraction.

ACSE: Advanced Compiler System for Education – p. 67

MACE Instruction Format

0 0

0 1

1 0

1 1

Ternary Instruct ion

Binary Instruct ion

Unary Instruct ion

Jump Instruction

31 30 29 26 25 21 20 16 15 11 10 0

31 30 29 26 25 21 20 16 15 0

31 30 29 26 25 21 20 0

31 30 29 26 25 20 0

19

19

RDEST

RDEST

RDEST RSOURCE1

RSOURCE

RSOURCE2Opcode

Opcode

Opcode

Opcode

Immedia te va lue

Immedia te address

Immedia te address

FLAGS

ACSE: Advanced Compiler System for Education – p. 68

MACE Instruction Format

Unused

10 4 3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

3 2 1 0

1---

1

1

1

- - -

- - -

- - -

Bitmask for SIGN

Bitmask for
INDIRECT_RSOURCE2

Bitmask for CARRY

Bitmask for
INDIRECT_RDEST

If CARRY is set, the re-
sult of the binary oper-
ation is incremented by
the carry bit of the PSW
If SIGN is set,
RSOURCE1 and
RSOURCE2 are treated
as signed integers
INDIRECT_RDEST is
set to 1 if the destination
register is indirectly
addressed
INDIRECT_RSOURCE2
is set to 1 if the
‘RSOURCE2’ register is
indirectly addressed

ACSE: Advanced Compiler System for Education – p. 69

Example: ADD
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

031

0 0

31 30

0 0 0 0

29 26

0 0 0 1 1

25

21

0 0 0 0 1

20 16

0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0

0

15 11

10

Ternary Instruction

Opcode "ADD"

Register R3

Register R1

Register R2

25

RDEST (R3) and RSOURCE1 (R2)
are indirectly addressed

Decoded Instruction : ADD (R3) R1 (R2)
ACSE: Advanced Compiler System for Education – p. 70

Instruction Set: Notation
Possible effects on PSWbits:
• U The state of the bit is undefined
• - The bit remains unchanged
• * The bit is set or cleared according to the

outcome of the instruction

Operands:
• Rn Register location n
• imm Immediate value (16 bit or 32 bits)

ACSE: Advanced Compiler System for Education – p. 71

Instruction Set: ADD
ADD Add binary
Syntax: ADD [Rdest] [RSource1]

[RSource2]
Semantics: [Rdest] ← [RSource1] +

[RSource2]
Binary Opcode: ‘0000’

Description: Add the source operand
‘Rsource1’ to ‘Source2’ and
store the result in the destination
location ‘Rdest’.

Condition codes: N Z V C

* * * *
ACSE: Advanced Compiler System for Education – p. 72

Instruction Set: ADDI
ADDI Add with Immediate operand
Syntax: ADDI [Rdest] [RSource1] #[Imme-

diate]
Semantics: [Rdest]← [RSource1] + #[Immedi-

ate]
Binary Opcode: ‘0000’

Description: Add the source operand
‘Rsource1’ to the ‘immediate’
value and store the result in the
destination location ‘Rdest’.

Condition codes: N Z V C

* * * *
ACSE: Advanced Compiler System for Education – p. 73

Instruction Set: MOVA
MOVA Move Address to Register Loca-

tion
Syntax MOVA [RDest] [Address]
Semantics: [Rdest]← [Address]
Binary Opcode: ‘0001’

Description: Move the value of [Address] into
‘RDest’. Address is a 20-bit value

Usage: MOVA instructions are typically
used when we works on address
(pointers) or arrays.

Condition codes: N Z V C

- - - -
ACSE: Advanced Compiler System for Education – p. 74

Instruction Set: LOAD
LOAD Fill a register with a value read

from memory
Syntax LOAD [RDest] [Address]
Semantics: [Rdest]← *[Address]
Binary Opcode: ‘0100’

Description: Load the value previously stored at
‘Address’ memory location inside
the register ‘Rdest’

Condition codes: N Z V C

- - - -

ACSE: Advanced Compiler System for Education – p. 75

Instruction Set: STORE
STORE Spill a value
Syntax STORE [RSource] [Address]
Semantics: *[Address]← [RSource]
Binary Opcode: ‘0101’

Description: Store the value of ‘Rsource’ to the
‘Address’ memory location

Condition codes: N Z V C

- - - -

ACSE: Advanced Compiler System for Education – p. 76

Instruction Set: Scc (1)
Scc Set according to condition ‘cc’
Syntax Scc [Rdest] [Address]
Semantics IF cc == 1 THEN [Rdest] ← 1;

ELSE [Rdest]← 0.
Note: Address is unused.

’cc’ is checked against PSWregister. E.g.: ‘SEQ Rx’ stores 1 into Rx if bit ‘N’ is set in PSW; otherwise Rx is set to zero.

ACSE: Advanced Compiler System for Education – p. 77

Instruction Set: Scc (2)

Binary Op-codes:
SEQ ‘0111’
SGE ‘1000’
SGT ‘1001’
SLE ‘1010’
SLT ‘1011’
SNE ‘1100’

Condition codes: N Z V C

0 * 0 0

ACSE: Advanced Compiler System for Education – p. 78

Instruction Set: READ
READ Read from standard input an inte-

ger value
Syntax READ [RSource] [Address]
Semantics: Read from input an 32-bit signed

integer value, and store the value
to ‘RSource’. Address is unused.

Binary Opcode: ‘1101’

Condition codes: N Z V C

* * * *

ACSE: Advanced Compiler System for Education – p. 79

Instruction Set: Write
WRITE Write to standard output an integer

value
Syntax WRITE [RSource] [Address]
Semantics: Write to standard output a 32-bit

signed integer value stored into
Rsource. Address is unused.

Binary Opcode: ‘1110’

Condition codes: N Z V C

- - - -

ACSE: Advanced Compiler System for Education – p. 80

Instruction Set: Jump

Bcc Branch on condition cc
Syntax Bcc [Label]
Semantics IF cc == 1 THEN

[PC]← [PC] + Displacement;

• Displacement is the distance between PC and
the label address

• ‘cc’ is checked against the PSWregister
• E.g.: ‘BEQ Label’ performs a branch to ‘label’

address if bit N is set in PSW. Otherwise Rx is
set to zero.

ACSE: Advanced Compiler System for Education – p. 81

Instruction Set: Branch Condi-
tions

BT ‘0000’ BVC ‘1000’
BF ‘0001’ BVS ‘1001’
BHI ‘0010’ BPL ‘1010’
BLS ‘0011’ BMI ‘1011’
BCC ‘0100’ BGE ‘1100’
BCS ‘0101’ BLT ‘1101’
BNE ‘0110’ BGT ‘1110’
BEQ ‘0111’ BLE ‘1111’

ACSE: Advanced Compiler System for Education – p. 82

	Summary
	ACSE
	Overview
	Compilation process
	Compilation process: Front-End
	Compilation process: Back-End
	Source Language: 	exttt {LanCE}
		exttt {LanCE}: Tokens
		exttt {LanCE}: Grammar (1)
		exttt {LanCE}: Grammar (2)
		exttt {LanCE}: Grammar (3)
		exttt {LanCE}: Example
	ACSE SDT: Overview
	ACSE SDT: Program Information
	Assembly instructions
	Assembly instructions: Example (1)
	Assembly directives
	Axe Variables
	Axe Variable example
	Symbol Table
	Symbol Table: Example
	Symbol Table: Example
	AXE API: Symbol Table
	AXE API: Label Manager
	AXE API: Code Generation
	AXE API: Miscellanea
	AXE API: Expressions
	Semantic Actions Examples
	Arithmetics Expression (1)
	Arithmetics Expression (2)
	Arithmetics Expression (3)
	Arithmetics Expression (3)
	Comparison Expression (1)
	Comparison Expression (2)
	Do-while Statement (1)
	Do-while Statement (1)
	Assembler
	Assembler workflow
	Assembly format
	Assembly format: Notation
	Instructions and Directives
	Object file format
	Ternary Instructions: Arithmetics
	Ternary Instructions: Logic & Bitwise
	Ternary Instructions: Shift & Rotate
	Ternary Instructions: NEG
	Binary Instructions: Arithmetics
	Binary Instructions: Logic & Bitwise
	Binary Instructions: Shift & Rotate
	Binary Instructions: NOTL and NOTB
	Unary Instructions: NOP, HALT and MOVA
	Binary Instructions: LOAD and STORE
	Binary Instructions: SEQ, SGE, etc.
	Binary Instructions: READ and WRITE
	Jump Instructions
	Condition Codes (1)
	Condition Codes (2)
	Assembler Directives
	Assembler Directives: 	extbf {.word}
	Assembler Directives: 	extbf {.space}
	MACE
	MACE Architecture
	MACE Bootstrap
	MACE Execution Loop
	MACE Register File
	MACE Processor Status Word
	MACE Instruction Format
	MACE Instruction Format
	Example: ADD
	Instruction Set: Notation
	Instruction Set: ADD
	Instruction Set: ADDI
	Instruction Set: MOVA
	Instruction Set: LOAD
	Instruction Set: STORE
	Instruction Set: Scc (1)
	Instruction Set: Scc (2)
	Instruction Set: READ
	Instruction Set: Write
	Instruction Set: Jump
	Instruction Set: Branch Conditions

