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Abstract The hardware/software co-exploration is a critical phase for a
broad range of embedded platforms based on the System-On-Chip approach.
Traditionally, the compilation and the architectural design sub-spaces have
been explored independently. Only recently, some approaches have analyzed
the problem of the concurrent exploration of the compilation/architecture
sub-spaces. This paper proposes a framework to support the co-exploration
phase of the design space composed of architectural parameters and source
program transformations. The objective space is multi-dimensional, includ-
ing conflicting objectives such as energy and delay. In the proposed frame-
work, heuristic co-exploration techniques based on Pareto Simulated Anneal-
ing (PSA) have been used to efficiently explore the architecture/compiler
co-design space. This space is composed of the product of the parameters
related to the selected source program transformations and to the config-
urable architectures. A first result of this paper consists of showing how the
architecture/compiler co-exploration can be more effective than a traditional
two-phase exploration. Since the co-exploration space is quite large, to speed
up the co-exploration phase by several orders of magnitude over simulation-
based approaches, a methodology based on analytical models has been intro-
duced in the co-exploration framework. The goal of analytical models is to
quickly evaluate energy/delay metrics at the systems level, while maintaining
accuracy with respect to simulation-based co-exploration. The proposed co-
exploration framework has been applied to a parameterized SoC superscalar
architecture during the execution of a selected set of multimedia applica-
tions.
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1 Introduction

Evaluation of energy-delay metrics at the system-level is of main importance
for embedded applications characterized by low-power and high-performance
requirements. The growing spread of System-On-Chip (SOC) embedded ap-
plications based on the platform-based design approach requires a flexible
tuning framework to assist the phase of Design Space Exploration (DSE).
The overall goal of a multi-objective DSE phase is to optimally configure
the parameterized SOC platform in terms of both energy and performance
requirements depending on the given application.

Due to the complexity of recent HW/SW embedded systems, there is
a critical need to address architectural optimizations concurrently with the
tuning of the target application. The HW/SW co-exploration task consists of
dynamically profiling the target application compiled using different transfor-
mations and executed on different system configurations obtained by varying
architectural parameters. Through compiler/architecture co-exploration, the
synergy of HW and SW parts of an embedded system can be exploited and
power/performance trade-offs can be evaluated.

Only recently, some approaches [1–4] have analyzed the co-exploration
of the compilation space and the architectural design space from the en-
ergy/delay combined perspective. Although the works in [1,2] investigate
the influence of compiler optimization on the architectural exploration, the
source code is first optimized independent of the target architecture, then
the architecture is explored. The Buildabong framework proposed in [3] can
be considered as one of the first effort to support compiler/architectural
co-exploration to design ASIPs. In this work, an algorithm for pruning the
search space to find Pareto-optimal solutions has been proposed. The multi-
objective space considered in [3] is 3-dimensional: hardware cost, code size
and execution time. The main limitation of this approach is that the energy
cost has not yet been considered. However, energy represents one of the main
constraints in embedded system design. In the present paper, we addressed
the multi-objective co-exploration taking into considerations both energy and
delay.

Our work is complementary to the most recent studies in architecture/com-
piler co-exploration. In our approach, the main goal of the exploration phase
is to span concurrently the transformation and the architectural spaces, since
we want to exploit the intrinsic correlation between architectural and com-
piler parameters. In fact, in the proposed design flow, the results of the
co-exploration in terms of evaluation metrics provide a feedback for the Ar-
chitectural Space Exploration (ASE) module as well as for the Transformation
Space Exploration (TSE) module.

In particular, our framework has been proposed in [4] to jointly explore
the set of all HW/SW configurations of the SOC platform defined in the
combined System-Level Design Space: SSD = ST × SA, where ST is the
space of program transformations and SA is the space of architectural pa-
rameters. From the hardware side, we explore the architecture design space
(SA) for parameterized microprocessor-based systems. The goal of this phase
is to find the best architecture mainly in terms of the parameterized core
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processor, degree of Instruction Level Parallelism (ILP), number of levels
in the memory hierarchy, cache-related parameters, system-level bus topol-
ogy, width of address and data buses, etc. From the software side, we explore
the space of source program transformations (ST ) for embedded applications.
The objective of this phase consists of finding the best set of ordered program
optimization passes (such as function inlining, loop unrolling, loop blocking,
etc.) by estimating their effects on performance and energy.

Since the Compiler/Architecture Design Space is usually very large, a
multi-objective (power/performance) co-exploration approach based on the
full search is computationally infeasible, due to the long time required to
simulate the wide space of design parameters. In a multi-objective scenario,
such as the one we are considering, the goal of the system-level exploration
is to derive approximated energy/delay Pareto curves representing the best
trade-off between the interesting design requirements.

In the Compiler/Architecture Design Space, the time spent in the explo-
ration phase tDSE can be computed as |ST × SA| × tsim where tsim is the
average execution time of a single simulation run for a given architectural
platform and target application. As a motivating example, let us consider
a simplified scenario, where a 6-dimensional SA includes data and instruc-
tion cache parameters (where each parameter can assume 4 values) and a 2-
dimensional ST includes parameters related to loop tiling and loop unrolling
(where again each parameter can assume 4 values). Thus the cardinality of
the combined design space is |ST × SA| = 4096 × 16 = 65536. In the case of
a target application requiring a simulation time of 1 min, the time needed
to exhaustively explore the combined design space would have been approxi-
mately 45 days. Therefore, to reduce the exploration time, one of two factors
(or both) must be considered: either the number of explored design space
points must be reduced, or an estimation technique faster than simulation
must be employed.

The main contribution of this paper is twofold: in the first part of the pa-
per, heuristic optimization techniques (such as Pareto Simulated Annealing)
have been used to efficiently co-explore the design space; in the second part
of the paper, analytical models have been introduced to describe the energy–
delay system behavior as a function of the design space parameters, thus
speeding up the co-exploration phase, while maintaining sufficient accuracy
with respect to simulation–based co-exploration.

The main goal of the second part of the paper is to propose a methodology,
based on the introduction of analytical models, to reduce the cost of the co-
exploration phase, rather than a complete analytical model of the system
behavior. In particular, the analytical models proposed in this paper focus
on the energy-delay behavior of the memory hierarchy. This fact does not
represent a limitation, since the proposed methodology can be applied to
build extended analytical models representing other parts of the system.

The definition of the equation coefficients in the analytical models (namely,
model characterization phase) requires the simulation of the target applica-
tion in a set of design space points to derive the equation coefficients that
characterize the analytical models. Once the model coefficients have been
characterized, analytical models are used to speed up the co-exploration
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phase to rapidly predict the energy/delay for each point of the large co-
design space, thereby avoiding the simulation for each co-design point.

In this paper, the proposed co-exploration methodology has been applied
to a parameterized superscalar SoC architecture during the execution of a set
of benchmarks to find the best trade-off between the interesting design ob-
jectives, mainly energy and delay. A first set of experiments shows that the
proposed co-exploration approach is more effective to derive approximate
energy/delay Pareto curves than a traditional independent exploration of
the transformation and architectural sub-spaces. A second set of experimen-
tal results shows how the proposed analytical approach can be effective for
the reduction of the exploration time, while maintaining sufficient accuracy
with respect to simulation-based co-exploration. In particular, experimen-
tal results show that, for the selected set of benchmark, the co-exploration
speed-up reached by the proposed analytical-based approach is more than
three orders of magnitude with respect to traditional simulation-based co-
exploration. To evaluate the accuracy of the analytical-based with respect to
simulation-based approaches, the analytical equations derived in the model
characterization phase have been applied to estimate energy/delay metrics
for a set of validation points. The accuracy is 6.7% for the energy and 13%
for the delay.

The paper is organized as follows. A review of the most significant works
appeared in literature concerning the design space exploration problem is re-
ported in Section 2. Section 3 describes the System-Level Design Space, while
the proposed design space co-exploration framework is presented in Section
4. To speed up the co-exploration phase, analytical models are introduced in
Section 5, while Section 6 discusses the experimental results carried out to
evaluate the effectiveness of the proposed framework for a superscalar SoC
architecture. Finally, some concluding remarks and possible evolutions of this
work have been outlined in Section 7.

2 Background

The overall energy of embedded SOC platforms depends on both software
and hardware sides. In this section, we survey the most relevant works in
the fields of architectural exploration, source code transformations for en-
ergy optimization, analytical models for energy and delay estimation and
compiler/architecture co-exploration.

2.1 Architectural Exploration

Several system-level estimation and exploration methods have been proposed
in literature targeting power-performance tradeoffs from the architectural
standpoint [5–8].

The SimpleScalar toolset [6] is based on a set of MIPS -based architec-
tural simulators focusing on different abstraction levels to evaluate the effects
of some high-level algorithmic, architectural and compilation trade-offs. The
SimpleScalar framework provides the basic simulation-based infrastructure
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to explore both processor architectures and memory subsystems. However,
SimpleScalar does not support power analysis. Based on the SimpleScalar
simulators, SimplePower [8] can be considered one of the first efforts to eval-
uate the different contributions to the energy budget at the system-level.

More recently, the Wattch architectural-level framework has been pro-
posed in [7] to analyze power with respect to performance tradeoffs with
a good level of accuracy with respect to lower-level estimation approaches.
Wattch provides a framework to explore different system configurations and
optimization strategies to save power, in particular focusing on processor and
memory subsystems.

The work in [5] proposes a system-level technique to find low-power high
performance superscalar processors tailored to specific user applications.

Recently some approaches have been introduced to approximate Pareto-
curves for computer architecture design [9], [10], [11]. Platune [9] is an op-
timization framework that exploits the concept of parameter independence
to individuate approximate Pareto curves without performing the exhaustive
search over the whole design space. More recently, Palesi et al. [10] extended
Platune by applying genetic algorithms to optimize dependent parameters,
resorting to the default Platune policy when independent parameters are
specified by the user.

2.2 Source Code Transformations

According to [12], the most important optimization passes can be classified in
three categories: dataflow passes, passes that simplify the control and enlarge
the code, and passes that modify the access pattern to data. For the purpose
of co-exploration, the most relevant techniques are those operating on loops,
such as loop unrolling, loop tiling and loop fusion.

Several low-power software design techniques have been proposed in lit-
erature [13], [14]. Instruction-level optimization techniques [15] can be au-
tomated by applying them in the back-end of the compiler, however their
impact on energy is quite limited and they are strongly related to the target
architecture.

Other promising techniques are based on source code transformations [16–
18]. Panda et al. [16] present a survey of the state-of-the-art techniques for
the optimization of memory accesses, including software transformations. In
[17], code specialization is used for energy reduction, and exploration of the
transformation design space is performed. The work proposed in [18] explores
the program transformation design space to speed up the execution of DSP
applications.

With respect to these previous works, our approach bridges compiler and
architecture exploration, showing that exploring the software and hardware
parameters can lead to better solutions.
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2.3 Analytical Energy/Delay Estimation

Analytical techniques have been proposed in [19] for speeding up the cache/bus
power and performance evaluation with respect to simulation, while main-
taining sufficient accuracy with respect to simulation-based approaches. In [19],
analytical models are limited to represent cache and bus behavior. In our ap-
proach, the proposed analytical models cover the global energy/delay system
behavior in terms of compiler/architecture parameters such as tile size and
cache size.

A software cost model has been proposed in [20] to evaluate the impact
of transformations such as loop unrolling and loop tiling on system energy
and delay. Analytical and statistical models are proposed in [21] to estimate
the energy reduction obtained through loop unrolling and loop fusion.

In our approach, analytical models of the impact of program transforma-
tions and architecture parameters on energy and performances are applied
within the proposed co-exploration framework, to speed up the co-exploration
phase with respect to simulation-based approaches. Our work represents a
first attempt to combine both compiler and architecture parameters in a
analytical models.

2.4 Compiler/Architecture Co-Exploration

Most of the research works in energy optimization and/or estimation have
focused on the hardware modules composing the system and have not yet an-
alyzed the interaction between the hardware and software sides of the system.
Only recently, some approaches ([22,23,1–3]) have analyzed the concurrent
exploration of the compilation space and the architectural design space from
the energy point of view.

The Avalanche framework [22] represents one of the first attempts in
literature to simultaneously evaluate the energy-performance tradeoffs for
software, memory and hardware for embedded systems.

Low-power design optimization techniques for high performance proces-
sors have been investigated in [23] from the architectural and compiler stand-
points.

The energy estimation framework in [1], [2] supports both hardware and
software optimizations. The framework is based on SimpleScalar and Sim-
plePower toolsets, where a high-level optimization module has been added
to implement source-code optimizations. The main goal of this work is to
estimate the effects of performance-oriented compiler transformations on the
overall system (processor core plus memory subsystem) and in particular
on each module of the system. The focus on the work described in [1], [2]
is on energy estimation and optimization rather than the investigation of
energy-delay trade-offs. Moreover, this work first analyzes the source code
transformations, independently of the architecture, then the architecture pa-
rameters are explored.

A co-exploration approach for ASIPs has been recently proposed in [3]
where the authors span the space of processor architecture parameters as
well as of different compiler optimization strategies. A technique to prune
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the large search space to reduce the exploration phase has been proposed.
The objective space of this work is multi-dimensional including hardware
cost, execution time and code size. The main limitation of this approach is
that the energy cost has not been considered.

Other approaches are based on the introduction of Architecture Descrip-
tion Languages (ADLs) to support the co-exploration phase. The co-exploration
approach proposed in [24] is based on the LISA ADL to optimize the proces-
sor architecture together with the on-chip communication. In [25], the EX-
PRESSION language has been proposed to support architectural design space
exploration for embedded systems-on-chip and automatic generation of a re-
targetable compiler/simulator toolkit. Based on the EXPRESSION ADL,
the PBExplore approach described in [26] shows an application of the co-
exploration methodology to the problem of the optimization of register by-
passing.

2.5 Motivations of our Work

The approach presented in this paper is complementary to the recent stud-
ies focusing on compiler/architectural energy optimization and estimation.
Starting from our preliminary work in [4], the compiler/architecture design
spaces are explored concurrently and energy/delay trade-offs have been an-
alyzed. The main contributions of our work can be summarized as:

– The assessment of the usefulness of hardware/software co-exploration
with respect to traditional approaches where the hardware and software
design spaces are spanned separately;

– The integration of analytical models of energy and delay at system level
into the co-exploration framework to speed up the co-exploration phase.

3 System-Level Design Space

When considering a customizable SOC platform, the System Level Design
Space is composed of the set of all the feasible software/hardware configura-
tions of the platform defined as the product of the Transformation Space ST

and Architectural Space SA:

SSD = ST × SA

The main contribution of our approach is that the ST and SA spaces are
not spanned independently, but rather jointly. In this way, the cardinality of
the explored design space is given by |ST × SA|.

The Transformation Space ST models the effects of a set of program trans-
formations on the source code, such as function inlining, loop unrolling, loop
tiling and loop fusion. The points of ST correspond to different applications
of the optimization passes to the same source program.

For the purpose of co-exploration, we focused on a pair of source code
transformations impacting on architectural parameters: loop unrolling and
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loop tiling. These two transformations are parameterized in terms of un-
roll factor and tile size. The sets of possible values for these parameters can
be quite large, making these two transformations suitable targets for co-
exploration. On the contrary, source code transformations such as function
inlining or loop fusion generate a small Transformation Space, since their
parameters are binary values representing whether the transformation is ap-
plied or not.

In this paper, let us indicate the generic point in the transformation space
as the vector t ∈ ST where ST is the transformation space defined as:

ST = Sp1
× . . . Spl

. . . × Spn

where Spl
is the ordered set of possible configurations for parameter pl and

“×” is the cartesian product.
A transformation point is any point in a program where a transformation

can be applied. An instance of a transformation t, parameterized by a set
of k parameters, is composed of t and a value for each of its k parameters:
i(t) =< t, a1 . . . ak >. For example, if t is Loop Unrolling, an instance of t is
< t, 2 >, which means Loop Unrolling with unroll factor equal to 2.

Let P be the source program, composed of n transformation points p1 . . . pn:
P = {p1 . . . pn}. Let T be a set of m instances of transformations i1..im. For
the sake of simplicity, we assume that all transformation instances ij can be
applied to all pi. Where this is not possible, ij(pi) =⊥, we redefine the trans-
formation instance as the identity transformation, i′j(pi) = pi. We define the
Transformation Space ST as the power set of T × P .

We can easily extend this definition to the case of limited application
points for each transformation, by removing all sets that include an illegal
< ti, pj > pair. Obviously, |ST | is O(2|T |·|P |), where |T | is in turn a function
of the number and range of the parameters required for each transformation.

The Architectural Space SA considers all possible combinations of the
configurable architectural parameters, such as:

– Number of levels in the memory hierarchy and positioning (on-chip, off-
chip);

– Unified vs split data/instruction cache, at any hierarchy level;
– Cache configuration parameters (cache size, block size, associativity etc.);
– Micro-architectural-level parameters, such as number and type of proces-

sor functional units;
– Issue width sizes for ILP processors;
– Width and topology of address and data buses;

In the experimental evaluation reported in Section 6.1, to evaluate the
effectiveness of the co-exploration approach, a wide subset of SA has been
used including cache-related parameters as well as parameters related to the
processor microarchitecture. On the other hand, in Section 6.2, to validate
the analytical models describing the energy and delay behaviors of the caches,
the architecture space SA has been reduced taking into account only the L1
cache related parameters.
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In this paper, we indicate the generic point in the architectural design
space as the vector a ∈ SA where SA is the architectural space defined as:

SA = Sp1
× . . . Spl

. . . × Spn

where Spl
is the ordered set of possible configurations for parameter pl and

“×” is the cartesian product.
In the experimental evaluation discussed in the paper, we co-explored

a 15–dimensional subset of the full System Design Space (SES ⊂ SSD) in
Section 6.1, while we considered an 8–dimensional subset to reduce the com-
putational cost of PSA-based co-exploration reported in Section 6.2.

4 Design Space Co-Exploration Framework

The design space co-exploration framework described in this section has been
previously proposed in [4]. The structure of the framework, shown in Figure
1, is based on a modular implementation including the following open-source
and in-house modules:

– SUIF Optimizing Compiler;
– Transformation Space Exploration (TSE) Module;
– SimpleScalar Compiler;
– Architectural Space Exploration (ASE) Module;
– Wattch Simulator and Energy Estimator;
– System-Level Metrics Evaluator.

The co-exploration framework receives as input the given application (i.e.
a source code written in C) and explores the System-Level Design Space to
find the optimal system configurations in terms of source-code transforma-
tions and architectural parameters.

The proposed framework enables the concurrent exploration of source-
level transformations and architectural parameters by spanning the whole
System-Level Design Space (ST × SA). In our design flow, the results of
the co-exploration in terms of system-level evaluation metrics represent a
feedback for both ASE module and TSE modules.

Let us analyze in more detail each module of the proposed framework
described in Figure 1.

The SUIF Optimizing Compiler [27] has been chosen due to its modu-
larity: the SUIF Intermediate Representation provides an easy-to-use pro-
gramming interface enabling the construction and integration of optimiza-
tion passes. The module called Dependence Analyzer and IR Transformer
receives as input the SUIF Intermediate Representation, applies the source
code transformations and then generates the optimized intermediate repre-
sentation for the SUIF back end. The Source Code Optimizer in the Trans-
formation Space Exploration (TSE) Module selects the source-level transfor-
mation passes to be applied.
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Fig. 1 Basic design space co-exploration framework.

The SimpleScalar Compiler integrates the flexible and portable Sim-
pleScalar toolset [6], a collection of publicly-available simulation tools gen-
erating the executable code targeted toward the SimpleScalar architecture,
a derivation of the superscalar MIPS-IV instruction set architecture.

The Architectural Space Exploration (ASE) Module receives as input the
description of the possible design configurations (i.e. the target architectural
design space) and generates the executable model of the system to be simu-
lated by Wattch. The Architecture Optimizer module is responsible for choos-
ing, from the design space, a set of candidate optimal points to be evaluated.
Once selected a point in the design space, it is mapped into a specific instance
of the target architecture by the Architecture Mapping module, providing the
evaluation of each point by means of an executable model.

Since in our case the System-Level Design Space is very large, a multi-
objective exploration approach based on the full search exploration is com-
putationally infeasible, due to the long simulation time required to explore
the wide space of parameters.

The goal is to efficiently explore the multi-objective design space in order
to find a good approximation of Pareto curves representing the best com-
promise between the interesting design objectives, mainly energy and delay.
The problem of the efficient construction of Pareto curves has been already
addressed in the past [11].

In the TSE and ASE modules, we implemented a heuristic technique
(namely, Pareto Simulated Annealing [28]) that is an evolution of the simu-
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lated annealing approach to derive the Pareto curves for the multi-objective
exploration. The Pareto Simulated Annealing has been chosen since it has
been demonstrated in [29] that it is suitable for multi-objective DSE. Simu-
lated annealing is a Monte Carlo approach for minimizing multivariate func-
tions. The term “Simulated Annealing” derives from the analogy with the
physical process of heating and then slowly cooling a substance to obtain
a strong crystalline structure. In the Simulated Annealing algorithm a new
configuration is constructed by imposing a random displacement. If the cost
function of this new state is lower than that of the previous one, the change
is accepted unconditionally and the system is updated. If the cost function
is greater, the new configuration is accepted probabilistically; the acceptance
rate decreases with the temperature. This procedure allows the system to
move consistently towards lower cost function states, yet still ‘jump’ out of
local minima due to the probabilistic acceptance of some upward moves. The
PSA is an evolution of SA for multi-objective optimization. At each step
of PSA, the starting point is not a single configuration but a set of points
called Partial Pareto Set, PPS. At each step the PPS is updated with all
the non-dominated new solutions. All dominated solutions in the PPS are
removed, while the new dominated solutions are accepted with a probability
depending on the distance from the partial Pareto front.

The Performance Simulator and Energy Estimator module of our frame-
work integrates the Simple Scalar architectural simulator and the Wattch
tool for architectural level power analysis [7]. Then, the System-Level Met-
rics Evaluator is in charge of comparing the different system configurations in
terms of system-level metrics. Energy and delay have been chosen, since they
are the most widely used metrics, but the methodology is general and could
be easily extended to cover other system-level metrics such as throughput.
The motivation of the proposed methodology is to reduce the simulation
overhead of the co-exploration phase, so it is not useful to consider static
metrics, such as area, to evaluate the effectiveness of our approach.

In our framework, while the delay evaluation is embedded in the cycle-
accurate SimpleScalar simulation environment, the use of each system re-
source must be extracted and imported into the Wattch energy models de-
fined to evaluate the overall energy metric. All these statistics are gathered by
profiling the functional and memory behavior of the processor during the sim-
ulation of the embedded application by means of a cycle-accurate Instruction-
Set Simulator (ISS). For multi-objective exploration, the System-Level Met-
rics Evaluator module derives the energy-delay Pareto curve for the set of
explored points in the system-level design space. These metrics provide the
required feedback for the TSE and ASE modules to derive the next points
to evaluate.

5 Proposed Analytical Approach

The main contribution of this paper consists of introducing a methodology
based on analytical models to replace the simulation in the estimation of
energy/delay metrics at system-level, to further reduce the time spent during
the co-exploration phase.
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We propose to empirically derive the analytical equations describing the
energy–delay behavior of the modules of the system as a function of the design
space parameters. In a first phase, called model characterization, we simulate
the target application in a set of design space points to derive the equation
coefficients that characterize the analytical models. Once the equation co-
efficients in the models have been characterized, the second phase consists
of the application of parameterized models to speed up the co-exploration
phase to traverse the system–level design space.

To this end, we modified the basic co-exploration framework proposed
in Figure 1 as shown in Figure 2 and 3. In Figure 2, the co-exploration
framework has been extended with a linear regression module that analyzes
the metric values and tunes a set of coefficients in the analytical models. The
resulting parameterized models are verified for accuracy against the metric
values obtained by simulation. This first modified framework is used until the
accuracy of the parameterized models becomes steady. Then, the simplified
framework described in Figure 3 replaces it. In this simplified framework,
the simulation and compilation phases of the original framework are entirely
replaced by the parameterized models.

The proposed analytical models focus on the energy-delay behavior of the
memory hierarchy. This fact does not represent a limitation of the approach,
since the proposed approach based on the introduction of analytical mod-



13

els can be easily extended to other classes of the system-level parameters.
However, the effect of the other architectural parameters (such as number of
functional units) that have been fixed, is taken into account in the coefficients
of the analytical models, dynamically characterized.

In order to simplify the model complexity, the System-Level Design Space
parameters have been divided in two clusters, assuming that parameters from
different clusters are independent to each other, as proved in [30]. The first
set, called Data Side Parameters Cluster, includes the Tile Size, Data Cache
Size, Data Cache Block Size and Data Cache Associativity. The second set,
called Instruction Side Parameters Cluster, includes the Unroll Factor, In-
struction Cache Size, Instruction Cache Block Size and Instruction Cache
Associativity.

Each cluster defines a new subset of the full System-Level Design Space.
For each subset, we first define an analytical model that allows us to esti-
mate the energy and delay metrics from the values of the parameters in the
corresponding cluster. In the model characterization phase, we simulate a set
of randomly chosen points, and we apply a linear regression to obtain values
for the coefficients of the equations. Then, we combine the two sets of models
(data side and instruction side) into a unified model to represent the system
behavior in the full System-Level Design Space.

5.1 Analytical Models depending on Data Side Parameters Cluster

Within the subspace defined by the Data Side Parameters Cluster, we first
estimate the data cache miss rate (MRD). We assume that the MRD de-
pends on the inverse of the data cache size (SD), as larger caches can hold
more blocks. The MRD is affected by the data cache block size (BD) with
a dependence that is experimentally proved to be both linear and quadratic.
This is due to the fact that larger block sizes reduce misses, taking advan-
tage of spatial locality, but the miss rate actually grows if the block size is
too large with respect to the cache size [31]. The miss rate also has a linear
dependence on the data cache associativity (WD), as shown in [19]. There
is a quadratic dependence on the tile size (T ), since larger tiles increase the
number of misses, and each tile is a matrix of size (T × T ). Therefore, the
analytical model of data cache miss rate MRD is:

MRD = µD
0 + µD

1
1

SD + µD
2 BD+

+µD
3 (BD)2 + µD

4 WD + µD
5 T 2 (1)

where the µD
0 to µD

5 coefficients must be estimated in the model characteri-
zation phase.

The next step is to estimate the number of instructions per branch (IPBD)
by considering its inverse dependence on T , since the number of branch in-
structions to perform increases as the tile size decreases:

IPBD = βD
0 + βD

1
1
T

(2)

After the estimation of MRD and IPBD metrics, we can now provide an
estimate of the delay and energy associated with data side parameters:
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DelayD = δD
0 + δD

1 MRD + δD
2 IPBD (3)

EnergyD = εD
0 + εD

1 MRD + εD
2 IPBD+

+εD
3 SD + εD

4 WD (4)

The delay is estimated as a linear combination of MRD and IPBD, as ad-
ditional misses and branches increase the execution time of the program
proportionally to their respective costs. MRD and IPBD also contribute to
the energy consumption, as they cause an increase in the activity of the cor-
responding hardware modules. However, energy is also directly dependent on
the size of the data cache, since a larger cache consumes more energy, and on
the data cache associativity, due to the increased complexity of the control
hardware.

5.2 Analytical Models depending on Instruction Side Parameters Cluster

As before, the coefficients of the models depending on the Instruction Side
Parameters Cluster have been empirically derived and models coefficients
have been estimated by the model characterization phase. Within the sub-
space defined by the Instruction Side Parameters Cluster, we first estimate
the instruction cache miss rate (MRI). The MRI depends on the inverse
of the instruction cache size (SI), as larger caches can hold more blocks.
The MRI is affected by the instruction cache block size (BI), but due to
the more sequential access patterns (with respect to the data cache), this
dependence is on the inverse of the BI , and no degradation is experienced
on larger caches. The miss rate has a linear dependence on the instruction
cache associativity (W I). Since the size of the code linearly depends on the
unroll factor Uf , this parameter also affects the miss rate. The overall MRI

model is shown in Equation 5:

MRI = µI
0 + µI

1
1

SI + µI
2

1
BI + µI

3W
I + µI

4Uf (5)

The next step is to estimate the number of instructions per branch (IPBI)
due to the parameters in the Instruction Side Parameters Cluster. Since the
distance between two branches increases with growing values of the Uf , there
is a direct dependency:

IPBI = βI
0 + βI

1Uf (6)

We also estimate the variation in the number of instruction per cycle
(IPC) as a linear combination of the MRI and the IPBI , as shown in
Equation 7:

IPCI = ηI
0 + ηI

1MRI + ηI
2IPBI (7)

Having estimated the MRI , IPBI and IPCI , we can now provide an es-
timate of delay and energy associated with the instruction cache parameters,
shown in Equations 8 and 9:
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DelayI = δI
0 + δI

1MRI + δI
2IPBI + δI

3IPCI (8)

EnergyI = εI
0 + εI

1MRI + εI
2IPBI+

+εI
3IPCI + εI

4S
I + εI

5W
I (9)

The delay is estimated as a linear combination of the three metrics, since
additional misses and branches contribute to the execution time of the pro-
gram proportionally to the respective costs, and the IPCI also affects the
total execution time. Although the IPCI term is a linear combination of
MRI and IPBI , we keep it explicitly in Equations 8 and 9, since it is more
accurate to first evaluate the η coefficients and then use the estimated IPCI

term instead of re-evaluating new coefficients for the indirect contributions
of MRI and IPBI to IPCI .

The MRI , IPBI and IPCI contribute also to the energy consumption,
as they cause an increase in the activity of the respective hardware. However,
energy is also directly dependent on the size of the instruction cache, since a
larger cache consumes more energy, and on the instruction cache associativity,
due to the increased complexity of the control hardware.

5.3 System-Level Analytical Models

Finally, we combine the models associated with the two (instruction and
data) clusters to provide estimates of both the instruction side and data side
(and related source code transformations) contributions to the overall system
energy and delay.

To do so, we must purge the constant components from the instruction
side and data side metrics, keeping only the variable components that ac-
tually represent the useful information, i.e. the dependence relation between
the metric and the design space parameters, and new constant terms δTot

0

and εTot
0 are introduced to represent the contributes to the overall system

energy and delay that are independent from the design space parameters.
Moreover, we need to combine IPBI and IPBD into a single metric, as

in Equation 10:

IPBTot = βTot
0 + βI

1Uf + βD
1

1
T

(10)

Then, we can estimate the overall delay and energy associated with the
system:

DelayTot = δTot
0 + δTot

1 IPBTot + δD
1 MRD+

+δI
1MRI + δI

3IPCI (11)

EnergyTot = εTot
0 + εTot

1 IPBTot + εI
1MRI+

+εI
3IPCI + εI

4S
I + εI

5W
I+

+εD
1 MRD + εD

3 SD + εD
4 WD

(12)
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6 Experimental Results

In this section, two sets of experiments are shown:

– The first set to compare the architecture/compiler co-exploration ap-
proach with a traditional independent exploration of the architecture and
compiler subspaces;

– The second set to prove the effectiveness of our analytical approach for
the reduction of the co-exploration time.

Experimental results are obtained by applying the proposed co-exploration
framework to optimize the PISA superscalar architecture during the execu-
tion of a set of selected kernels from multimedia industrial applications sup-
plied by STMicroelectronics. The set of target benchmarks are summarized
in Table 6. We used application kernels because the loop transformations
must be optimally tuned for each loop. In a large application, only the most
frequently executed parts of the code (kernels) will be fully co-optimized with
the architecture. The choice to use application kernels is also supported by
the fact that, for the class of applications represented by the most popular
suites of standard benchmarks (such as Mediabench and Powerstone), the
percentage of execution time spent in the five most frequently used loops is,
on average, over 82% as reported in [32].

Table 1 Description of the target benchmark kernels

Benchmark Description

AES Symmetric Block Cypher
DCT IDCT Un-optimized Discrete Cosine Transform

and Inverse Discrete Cosine Transform
FDCT Fast Discrete Cosine Transform
FIDCT Fast Inverse Discrete Cosine Transform
FIR 1, FIR 2 Linear-phase FIR digital filter (1D, 2D)
GAMMA Computes the gamma coefficients
LUEQ Lower/upper triangular matrix factorization

6.1 Co-Exploration vs. Two-Phase Exploration

In our set of experiments, we co-explored a 15–dimensional subset of the full
System Design Space (SES ⊂ SSD), where the Architectural Space is given
by: SA = Ssi

× Ssd
× Ssu2

× Sbi
× Sbd

× Sbu2
× Sai

× Sad
× Sau2

× Sia ×
Sim × Sfpa × Sfpm × Siw and the Transformation Space is simply given by
ST = Su. More in detail, we considered:

– Ssi= {2KB, 4KB, 8KB, 16KB} sizes of the L1 instruction cache;
– Ssd= {2KB, 4KB, 8KB, 16KB} sizes of the L1 data cache;
– Ssu2

= {16KB, 32KB, 64KB, 128KB} sizes of the unified L2 cache;
– Sbi

= {16B, 32B} block sizes of the L1 instruction cache;
– Sbd

= {16B, 32B} block sizes of the L1 data cache;
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– Sbu2
= {32B, 64B} block sizes of the unified L2 cache;

– Sai
= {1−way, 2−way} associativity values of the L1 instruction cache;

– Sad
= {2 − way, 4 − way} associativity values of the L1 data cache;

– Sau2
= {4 − way, 8 − way} associativity values of the unified L2 cache;

– Sia= {1, 2} number of integer ALUs;
– Sim= {1, 2} number of integer multipliers;
– Sfpa= {1, 2} number of floating point ALUs;
– Sfpm= {1, 2} number of floating point multipliers;
– Siw= {2, 4, 8} processor parallel issues;
– Su= {< tu, k > |k ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}} where k is the unroll

factor;

The co-exploration based on full search would have required the simula-
tion of the System-Level Design Space SSD = SA × ST , whose cardinality
is given by: |SSD| = |SA × ST | = 196608 × 10. To analyze the effectiveness
of the proposed approach, we compared three different exploration strategies
(two traditional strategies where the two spaces are explored separately, and
our co-exploration strategy) by evaluating the same number of simulation
points (1000). The 1000 simulation points are chosen by means of a heuris-
tic optimization algorithm. Due to the large difference in size between the
architectural space (196608 points) and the program transformation space
(10 points), in the two-phase exploration strategies we always exhaustively
searched the Transformation Space.

– Two–Phase (SA + ST ) Exploration, where we performed separately the
heuristic search of the Architectural Space followed by the exhaustive
search of the Transformation Space. The cardinality of the design space
is: |SSD| = |SA| + |ST |

– Two–Phase (ST + SA) Exploration, where we performed separately the
exhaustive search of the Transformation Space (given the target archi-
tecture) followed by the heuristic search of the Architectural Space. The
cardinality of the design space is: |SSD| = |ST | + |SA|

– Co-Exploration, where we performed jointly the heuristic search on the
System-Level Design Space, that is the product of the Transformation
Space and the Architectural Space. The cardinality of the design space
is: |SSD| = |ST × SA|

Figure 4 shows three approximate Pareto curves in the energy-delay space
for the LU decomposition benchmark, that has been selected among the
benchmarks to represent the energy-delay behavior. The first approximate
Pareto curve (empty dots) is related to our co-exploration methodology ap-
plied to the LU decomposition benchmark, while the other two approximate
Pareto curves (crosses and stars) represent the results of the two-phase ex-
plorations. The curves clearly show a dominance of the results of the co-
exploration with respect to (ST + SA) and (SA + ST ) explorations in finding
Pareto points.

Let us now consider the point in Figure 4 corresponding to the minimum
delay imposed by (ST +SA) exploration. The co-exploration provides a dom-
inating point preserving the delay constraints, while reducing energy by 15%
approximately.
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Fig. 4 Comparison between two–phase and co–exploration methodologies in terms
of energy-delay Pareto points for the LU decomposition (LUEQ) benchmark.

To compare more precisely the approximate Pareto curves derived from
different exploration techniques, we applied the Two–set coverage metric de-
fined in [33] to the results obtained for all the benchmark suite. Let X ′, X ′′

∈ X be two sets of decision vectors. The function C maps the ordered pair
(X ′,X ′′) to the [0,1] interval.

C(X ′,X ′′) :=
|{α′′ ∈ X ′′;∃α′ ∈ X ′ : α′ � α′′}|

|X ′′|
(13)

Given the definition, C(X ′,X ′′) is not necessarily equal to 1−C(X ′′,X ′).
Note that the value C(X ′,X ′′) = 1 means that all points in X ′′ are weakly
dominated (�) by or equal to the points in X ′. As opposite, the value
C(X ′,X ′′) = 0 represents the situation when none of the points in X ′′ are
covered by the set of points in X ′.

Table 2 reports the two–set coverage metric (given by Equation 13) com-
puted for all the selected benchmarks. Since the metric is asymmetric, it has
been computed for co-exploration with respect to two–phase (SA + ST ) and
vice versa (see second and third columns of Table 2 respectively), and for co-
exploration with respect to two–phase (ST + SA) and vice versa (see fourth
and fifth columns respectively). For 4 over 8 benchmarks, the co-exploration
outperforms both (SA + ST ) and (ST + SA) explorations. For these 4 bench-
marks, both two-phase explorations do not add any approximated Pareto
points with respect to the approximated Pareto curve obtained by the co-
exploration. Although for the other 4 benchmarks the co-exploration has a
lower coverage, it adds some useful points to the approximate Pareto curve.
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Table 2 Comparison of Pareto curves: Two–set coverage of the Co–Exploration
(Co) with respect to Two-Phase Explorations (TP) for different benchmarks.

SA + ST ST + SA

Benchmark C(Co,TP) C(TP,Co) C(Co,TP) C(TP,Co)

AES 0.9 0 1 0
DCT IDCT 0.07 0.7 0.09 0.8
FDCT 0.14 0.64 0.12 1
FIDCT 0.56 0.8 0 0.9
FIR1 0.96 0 0.82 0
FIR2 0.43 0.5 0.7 0.5
GAMMA 0.83 0 1 0
LUEQ 1 0 1 0

Average 0.61 0.33 0.59 0.4

Table 3 Average unroll factor and related standard deviation for Co-Exploration
Pareto points for different benchmarks.

Benchmark Unroll Avg. Unroll St.Dev.

AES 11 1.07
DCT IDCT 0 0
FDCT 4.36 4.18
FIDCT 0 0
FIR1 10 5.90
FIR2 0 0
GAMMA 4.40 3.29
LUEQ 4.93 1.03

Average 4.34 1.93

To outline the effects of the Loop Unrolling transformation on each bench-
mark in Table 2, the average unroll factors corresponding to the Pareto points
for the different benchmarks and their standard deviations are shown in Ta-
ble 3. Wherever the Loop Unrolling transformation provides some benefits
in terms of delay and energy, the co-exploration dominates the two-phase
exploration techniques, except for the case of the FDCT benchmark, where
the high standard deviation is due to the fact that for the large part of the
co-exploration space the optimal unroll factor is equal to zero. In this case,
and in general when the optimal unroll factor is equal to zero (i.e. when
the Loop Unrolling is not useful at all such as in DCT IDCT , FIDCT and
FIR2), the co-exploration is outperformed, since the two-phase explorations
analyze a reduced design space with respect to the co-exploration.

6.2 Characterization and Validation of Analytical Models

In this section, we provide results on the characterization and validation
phases of the proposed energy/delay analytical models by applying our co-
exploration framework to the selected set of benchmarks.

In these experiments, we limited the exploration to a 8–dimensional sub-
set of the full System Level Design Space, (SES ⊂ SSD). Loop Unrolling
and Loop Tiling have been chosen among the possible optimization passes
to reduce the number of processor cycles and energy, while among the pos-
sible hardware parameters, we have selected the parameters related to L1
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caches to exploit data and instruction locality. Globally, we considered SA =
Ssi

× Ssd
× Sbi

× Sbd
× Sai

× Sad
and ST = Su × St where:

– Ssi= {2KB, 4KB, 8KB, 16KB} sizes of the L1 instruction cache;
– Ssd= {2KB, 4KB, 8KB, 16KB} sizes of the L1 data cache;
– Sbi

= {16B, 32B} block sizes of the L1 instruction cache;
– Sbd

= {16B, 32B} block sizes of the L1 data cache;
– Sai

= {1−way, 2−way} associativity values of the L1 instruction cache;
– Sad

= {2 − way, 4 − way} associativity values of the L1 data cache;
– Su= {< tu, k > |k ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}} where k is the unroll

factor;
– St= {< tt, t > |t ∈ [10, 180]} where t is the tile size varying by increment

of 5.

Considering the variation of the above parameters, the System-Level De-
sign Space has a cardinality |SSD| = |SA × ST | = 3648 × 340 = 1240320.

First, the co-exploration framework has been applied to the selected set of
benchmarks to derive the coefficients of the analytical equations by simulat-
ing a small number of points in the co-design space. To set up the character-
ization phase, the number of points to be simulated has been determined by
trading off the accuracy. For all the benchmarks, Figure 5 shows the variation
of the energy and delay average error of estimated with respect to simulated
system-level metrics as the number of simulated points used in the model
characterization phase increases up to 280. The energy and delay average
errors become steady by considering on average 60 simulation points over a
design space composed of 1240320 points.
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Fig. 5 Energy and delay average error of estimated vs. simulated metrics by vary-
ing the number of simulated points used in the Model Characterization phase.

Therefore, in the following characterization experiments, we considered
60 randomly chosen simulation points to evaluate the model coefficients for
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the set of selected benchmarks. Accuracy data have been collected for all the
selected benchmarks, reporting an average error of the proposed system-level
analytical models with respect to simulation-based approach of 5% and 12.3%
in terms of energy and delay respectively. The accuracy values depend on the
accuracy of the underlying SimpleScalar/Wattch simulators [6,7]. However,
as representative examples of the accuracy reached during the characteri-
zation phase, the scatter plots in Figures 6, 7, and 8 show the agreement
between measured and predicted energy and delay values for the characteri-
zation process of the system-level analytical models just related to Gamma,
FDCT, and DCT IDCT benchmarks respectively. In particular, for Gamma
results in Figure 6, the average (maximum) error of the proposed analyti-
cal models with respect to the simulated values is within 1.11% (2.78%) in
terms of energy, while for the estimated delay, the average (maximum) error
is within 0.54% (1.29%). For the FDCT benchmark in Figure 7, the average
(maximum) errors are respectively within 2.21% (6.17%) for the energy, and
1.86% (4.91%) for the delay. For the DCT IDCT results in results in Figure
8, the average (maximum) errors are respectively within 3.76% (10.84%) for
the energy, and 3.34% (8.27%) for the delay.
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Fig. 6 Model characterization phase: Agreement between simulated energy and
delay values with respect to estimated values by analytical models for GAMMA
benchmark.

To provide evidence on the speedup of the co-exploration phase obtained
by the introduction of analytical models, Table 4 compares the co-exploration
times required by three different approaches:

– Exhaustive co-exploration through simulation of each point of the com-
piler/architecture design space;

– PSA-based co-exploration through simulation of each point of the Partial
Pareto Set;

– Co-exploration through analytical models.

The co-exploration time (last row of Table 4) has been approximated as
the number of simulated points times the average simulation time for each
point. The time required to simulated a single point of the design space (1
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Fig. 7 Model characterization phase: Agreement between simulated energy and
delay values with respect to estimated values by analytical models for FDCT bench-
mark.
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Fig. 8 Model characterization phase: Agreement between simulated energy and
delay values with respect to estimated values by analytical models for DCT IDCT
benchmark.

minute) has been averaged over the selected benchmarks running on a Intel
P4 1.7 GHz PC with 1GB RAM (but this value can be considered as purely
indicative). For the exhaustive co-exploration, the number of simulated points
is equal to the cardinality of the system-level design space (1240320), while
for the PSA-based co-exploration the number of design points to be simu-
lated has been reduced to 18392. For the analytical approach, the number
of simulated points (60) has been restricted to the set of points imposed by
the model characterization effort. The exhaustive co-exploration represents
an unfeasible approach requiring 29 months to simulate hundred of thousand
points, but the co-exploration time can be drastically reduced to 1 hour for
the analytical approach. The results demonstrate how the introduction of an
optimization technique such as PSA-based can reduce the co-exploration of
more than one order of magnitude, while the analytical co-exploration can
reduce up to more than three orders of magnitude.

To validate the proposed analytical approach, we applied our framework
to all benchmarks to compare the results of the simulation of a sub-set of
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Table 4 Comparison of Different Co–Exploration Times.

Co-exploration
Exhaustive PSA-based Analytical

Number of explored points 1240320 18392 1240320
Number of simulated points 1240320 18392 60
Ave. single simulation time 1 min 1 min 1 min
Co-exploration time 29 months 13 days 1 hour

design space points to the estimates obtained by the analytical models, since
it was unfeasible to simulate the whole set of 1240320 points. A sub-set
composed of 300 points has been randomly selected over the whole set of
1240320 points where the 60 points used during the model characterization
phase have been excluded. While accuracy data have been collected for all the
selected benchmarks, reporting an average error of 6.7% and 13% in terms of
energy and delay respectively, the scatter plots in Figures 9, 10, and 11 show
the agreement between measured and estimated energy and delay values for
the proposed system-level analytical models related to Gamma, FDCT, and
DCT IDCT benchmarks. In particular, for Gamma results in Figure 9, the
average (maximum) error of the proposed analytical models with respect to
the simulated values is within 2.14% (8.92%) in terms of energy, while for
the estimated delay, the average (maximum) error is within 0.54% (1.60%).
For the FDCT benchmark in Figure 10, the average (maximum) errors are
respectively within 3.00% (13.12%) for the energy, and 1.86% (5.26%) for
the delay. For the DCT IDCT results in results in Figure 11, the average
(maximum) errors are respectively within 4.23% (17.60%) for the energy,
and 3.30% (8.54%) for the delay.
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Fig. 9 Model validation phase: Agreement between simulated energy and delay
values with respect to estimated values by analytical models for GAMMA bench-
mark.
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Fig. 10 Model validation phase: Agreement between simulated energy and delay
values with respect to estimated values by analytical models for FDCT benchmark.
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Fig. 11 Model validation phase: Agreement between simulated energy and de-
lay values with respect to estimated values by analytical models for DCT IDCT
benchmark.

7 Conclusions and Future Works

This paper faces the problem of architecture/compiler co-exploration of em-
bedded Systems-on-Chip to evaluate energy/delay trade-offs. The first goal
of this paper is to demonstrate how the combined architecture/compiler co-
exploration is more effective than a traditional separate exploration of source
code transformation and architectural parameters. The second goal of this
work is to propose a framework to speed up the co-exploration phase. The
methodology is based on an analytical approach in which the energy/delay
behavior of the system has been described in terms of system-level parameters
(including source code transformation parameters). After the characteriza-
tion of the coefficients of the analytical models, the parameterized models are
then used to rapidly predict the energy/delay system behavior for each pos-
sible configuration of the large co-design space. The validation results of the
proposed approach show a speedup of more than three orders of magnitude
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with respect to traditional simulation-based co-exploration while preserving
accuracy within 6.7% for the energy and 13% for the delay.

Further evolutions of the present work are focused on the evaluation of
a larger class of source code transformations together with the evaluation of
possible correlation between code transformations and architectural parame-
ters. Concerning the definition of the analytical models, we initially focused
the architectural space analysis on the parameters related to the I and D
caches. In the next future, we plan to extend the analytical models to other
classes of the system-level parameters such as the issue rate and number of
parallel function units.
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