
A Domain Specific Language for Cryptography∗

Giovanni Agosta
Politecnico di Milano
agosta@elet.polimi.it

Gerardo Pelosi
Università degli Studi di Bergamo

gerardo.pelosi@unibg.it

Abstract

In this paper, we propose a domain specific language for
the development of hardware/software cryptographic
systems based on the well known Python programming
language. It is designed to allow a wide range of differ-
ent abstraction levels, and to support native constructs
and data types of the cryptography domain, thereby en-
abling a smoother transition between the cryptographic
algorithm design and the target platform implementa-
tion phases, as well as an easier automation of the latter
phase. The ease of embedding/extending Python in C,
C++, and even SystemC makes it a good candidate for
the uppermost levels of abstraction in the design flow
for this application domain.

1 Introduction

Cryptographic subsystems are becoming more and
more common in both software and hardware systems,
due to the increased emphasis on security requirements
in communications and data storage. Cryptographic al-
gorithms development and implementation on specific
target platforms is a complex task that requires the co-
operation between designers with widely different ex-
pertise domains – crpytography and hardware/software
systems design. Therefore, development using a gen-
eral purpose language such as C, with the help of ad-
hoc simulation tools, does not allow all the knowledge
available to the cryptographer to be passed to the hard-
ware/software designer. Moreover, language restric-
tions (e.g., aliasing) may force the hardware/software
designer to make conservative choices that could have
been avoided with a deeper understanding of the algo-
rithm.

∗This work was carried out under partial financial support of the
Italian MiUR (Project PRIN 2006 ID-2006099978) and in part by
project FSE ID-413174.

The above gap can be bridged with the help of an ap-
propriateDomain Specific Language(DSL). According
to [6], a DSL should offer the following benefits over
general purpose languages:

• Domain-specific notations based on established
syntax, e.g. from the mathematical representation
of algorithms.

• Direct incorporation of abstractions native of the
target domain (in our case, e.g., finite fields ele-
ments).

• Improved options for automatic transformation
(including synthesis, verification, and paralleliza-
tion).

The major decision patterns [6] that lead to the devel-
opment of a DSL in the case of cryptographic applica-
tions include:

Notation Cryptographic algorithms are strongly rooted
in Number Theory and Algebra, to guarantee their
security. They are therefore more concisely and
formally described if the paraphernalia of those
mathematical theories are available. On the other
hand, applied cryptography requires that such de-
scriptions be still easy to understand for software
engineers and architectural designers who may not
have advanced expertise in Algebra.

AVOPT Analysis, verification, optimization, paral-
lelization and transformation are all paramount to
the effectiveness of the porting process of crypto-
graphic system to specific hardware/software plat-
forms; a DSL can help in these tasks by embed-
ding explicit semantic information into the lan-
guage syntax (e.g., by providing specialized opera-
tor for optimizable operations, which would not be
easy to automatically detect if they were described
as generic functions).

1

Data structure representation and traversal
Cryptographic applications make a heavy use
of data types not commonly found in general
purpose programs and systems, such as multi-
precision numbers, univariate polynomials, and
compositions of polynomials, each managed in
the arithmetic native to the finite field selected.
A DSL language can provide syntactic means
to describe and traverse these data in a natural
way, while at the same time supporting AVOPT
processes.

The above considerations provide a motivation for
our proposal of a domain specific language based on
the well known Python programming language. The
proposed DSL is designed to allow a wide range of dif-
ferent abstraction levels, thereby enabling a smoother
transition between the cryptographic algorithm design
and the target platform implementation phases, as well
as an easier automation of the latter phase. The avail-
ability of bindings between Python and C, C++, as well
as SystemC [11] allows a natural transition to the lower
phases of design refinement and synthesis.

The rest of this paper is organized as follows: Sec-
tion 2 describes the proposed DSL for cryptographic
systems development, using the TEA [12] crypto-
graphic algorithm as a minimal example, while Sec-
tion 3 introduces a larger case study, using the Blowfish
algorithm [9]. Section 4 compares the proposed lan-
guage with existing or work-in-progress solutions from
the literature. Finally, Section 5 draws the conclusions
and outlines the future developments of the work de-
picted in this paper.

2 Language Definition

The language is based on Python [8], a dynamically
strongly typed language. Several basic features of the
language, including functions and iterative constructs
are modeled on the Python equivalents – though our
proposed language includes the possibility to statically
specify data type constraints for variables and parame-
ters.

The current implementation of the proposed lan-
guage is a simple translator to Python itself, which has
allowed a quick development cycle for the prototype
and the case studies exibited in Section 3 and 3.

2.1 Data Types

Cryptographic algorithms rely heavily on the in-
tractability of several number theory problems to guar-
antee security. Therefore all public key algorithms need
to represent the elements of algebraic structures such as
groups, fields and rings in a compact way.

To support the representation of these elements, our
language, rather than adopting a set of specialized
types, aims at providing a flexible type system that al-
low to easily write down high-level specifications for
the target algorithms.

To this end, our language implements both unlim-
ited precision and fixed precision data types, by allow-
ing each data type to be specified by a size extension.
The basic data type isint , a signed integer of unlim-
ited precision. Several specifiers can be added to ob-
tain unsigned integers (u.int) or fixed precision types
(int.32). A shortcut for int.1 is also provided
(bit), to ease bit manipulations.

It is possible to build user-defined data types by the
traditional array construct: e.g.,u.int.32 [4] de-
fines an array of four 32-bit unsigned integers. Explicit
type casting allows array types to be converted into inte-
gers of appropriate precision, e.g., anu.int.32 [4]
array can be converted to anu.int.128 , using the
big endian convention. The reverse is also possible. In
these conversion, the actual values are never changed
and the total bit size of the data is also unchanged. Cast-
ing with semantic changes (e.g., unsigned to signed),
widening or shrinking are also allowed.

To support modular arithmetic, a type specifiermod
is introduced. If a typet is specified as modular, e.g.,
mod 5 u.int.32 , an integer value cast tot is guar-
anteed to be compatible with the residue of the speci-
fied modulus – e.g.,(mod 5 u.int.32) 7 is equal
to 2.

For applications in cryptography, as an element of
an algebraic structure it is possible to consider a poly-
nomial of arbitrary degree with coefficients defined
as modular integers or other polynomials. Therefore,
it is necessary to provide means to declarepolyno-
mial data types. In the proposed language, poly-
nomials are declared as arrays of a modular base
or user-defined type, with an addedpolynomial
specifier. E.g., apolynomial mod 5 int [3]
can be used to declare a polynomial variable hav-
ing values of the typea2x

2 + a1x + a0, where
ai ∈ {0, 1, 2, 3, 4}. A more significant exam-
ple is polynomial mod (polynomial mod 2

2

Table 1: Scalar Operations.
Keyword Operation
+ addition
- subtraction
* multiplication
% remainder
/ quotient
** exponentiation
! negation
& logic product
| logic sum
ˆ exclusive or
$ S-box

bit [129]) bit [128] can be used to declare
an element type belonging to the finite fieldGF (2128)
with a 128-degree irreducible polynomial, which is
part of the definition of Advanced Encryption Standard
(AES) [2], one of the most commonly employed block
cyphers.

2.2 Scalar Operators

To guarantee the basic functionality, the language in-
cludes the typical set of scalar operator shown in Ta-
ble 1.

$ represents a substitution operation (S-box) ap-
plied asx$T wherex is u.int.X andT is array of
u.int.Y [2 ** X] .

Note that bitwise operations are not needed since ex-
plicit cast is used to perform bitwise operation by read-
ing integers as bit arrays.

2.3 Vector Operators

Vector operations are needed to work with arrays and
polynomials.

The\ operator performs the replication of array ele-
ments, e.g.v\2 gives[1,2,1,2] if v is [1,2] – it
is therefore a shortcut for[v;v] .

The concatenation operator differs from the array
construction operator in that the two operand arrays are
concatenated, rather than used as elements of a new
array, so, using the samev as above,[v,v] yields
[[1,2],[1,2]] , i.e., a 2×2 matrix.

Shifts and rotations are element-wise operations –
though if the elements are bits, the semantics of tradi-
tional shifts and rotations applied to scalar integers are

Table 2: Vector Operations.
Keyword Operation
>> shift right
<< shift left
[;] concatenation
[,] array construction
>>> rotate right
<<< rotate left
[] array element access
[:] subarray selection
\ array replication
’ transposition

obtained.
Finally, all scalar operators can be applied to

vectors, both arrays and polynomials. They are
applied in a coefficient-wise fashion, so apply-
ing (u.int.32)((bit [32])a) & (bit
[32])b)) gives the bitwise logic product of the two
operands (assumed to be 32-bits unsigned integers).
When binary scalar operators are applied to polynomial
operands of different length, the lowest degree polyno-
mial is expanded to the size of the highest degree by
zero-padding on the most significant elements.

2.4 Functions

The definition of functions is preserved from the Python
language, with the added option of imposing type con-
straints to parameters. Figure 1 shows an application
of this mechanism to TEA [12], a symmetric key cryp-
tographic algorithm specifically designed for low-end
embedded implementation. The rationale for such a
choice is to make the language better able to cope with
lower-level specifications, where the definition of data
type sizes can make a difference in implementation
choices. For example, in the synthesis of the algorithm
to a target platform, data of small size may fit into ar-
chitectural registers, while larger data may be split over
several registers, or special registers may be added in
the architecture.

In the current interpreted implementation of the
language, type constraints of parameters are im-
posed by means of Python decorators (@accepts or
@returns), to which the type constructs are translated
before execution.

In addition to standard functions, the proposed lan-
guage provides a syntactic shortcut to define permuta-

3

Figure 1: The TEA algorithm implemented in the proposed language
def F(u.int.32 v, u.int.32 [2] k, u.int.32 delta) -> u.int.3 2 :

return v<<4 + k[0] ˆ v + delta ˆ v>>5 + k[1]

def code(u.int.32 [2] v, u.int.32 [4] k) -> u.int.64 :
u.int.32 tot = 0; u.int.32 delta = 0x9e3779b9
for i in range(64) :

tot=tot+delta
v = v[1] , v[0] + F(v[1], k[u.int.2(i)<<1:u.int.2(i)<<1+2] , tot)

return v

tions. Permutations are frequently employed as basic
blocks of any symmetric cryptosystem. They are gen-
erally lengthy to encode in general purpose languages.
The proposed syntax makes it more immediate, by al-
lowing the permutation to be defined in terms of its cy-
cles: perm p : [3,2,1] ; applied to an array of
three elementsa = [x,y,z] , it has the effect to re-
order its elements:p(a) → [z,y,x] .

Some built-in functions are especially useful in cryp-
tographic applications. In addition to the Python-
derived built-in functions (filter is especially use-
ful in this context), our proposed language provides a
pair of functions for random number generation. While
the seed generation function has no special features, the
rand function takes a type definition as parameter, and
returns a random element of that type. A shortcut for a
random bit is also provided with the keyword?.

3 Case Study: Blowfish

Blowfish [9] is one of the fastest block ciphers avail-
able with no known practical cryptanalysis attacks. It is
also in the public domain, which allows free implemen-
tations, such as in GnuPG. Blowfish also has several
hardware implementations [5, 3], making it a suitable
test case for the proposed DSL.

To prove the flexibility of the proposed DSL, Fig-
ure 2 shows an implementation of the Blowfish kernel.
The encipher function takes as input the plaintextX and
a subkey arrayP as well as a Feistel functionF. F is
generated by the higher-order functiongen F, as it is
parameterized with respect to a second subkey array, in
the form of S-boxes (non-linear functions expressed as
lookup tables). DSL features are used to express both
the precision of parameters and the type of access to
data (by casting 64-bit integers to arrays of 32-bit in-
tegers, e.g.) as well as the specificity of S-boxes (via
the operator$), while high level language features are
used to make the implementation readable and concise

(a C implementation of the same code is about twice as
long).

4 Related Works

There are very few proposals in the field of domain spe-
cific languages for cryptographic applications.

Cryptol andµCryptol [4, 7] are the first commercial
attempt at producing languages to speed up the devel-
opment, optimization, and securing of cryptographic al-
gorithms. They focus on retargetability and validation,
but misses the goal of providing the means to describe
in a concise and easily comprehensible way the basic
operations at the heart of a cryptographic algorithm. As
an example, Figure 4 reports theµCryptol implementa-
tion [10] of the TEA algorithm. Compared to both the C
implementation shown in Figure 3 and the implementa-
tion in our proposed language described in Section 2, it
is not only lengthier, but also much harder to understand
for a non-specialized user. Some syntactic elements,
such as function definitions, are hard to spot even for
the expert user, since they differ widely from the typ-
ical representation of such elements in common pro-
gramming languages, thus making the learning curve
steeper.

CAO [1] is a work in progress, aiming at the de-
velopment of a language and related compilation tools
for asymmetric cryptographic protocols and algorithms.
CAO is based on C, with some elements from Occam
(for management of explicit parallelism) and hardware
description languages. With respect to this approach, a
Python-based language can capitalize the advantages of
its parent language in terms of list syntax expressivity,
as well as high-level language features such as higher-
order functions (used for example in the Blowfish case
study) or metaclasses (used in the current implemen-
tation to provide the fixed precision type system as a
replacement of the standard Python types).

4

Figure 2: The Blowfish algorithm implemented in the proposeddomain specific language
def gen_F(u.int.32 [256] [4] S):
def F(u.int.32 x) -> u.int.32:

u.int.8 [4] bs = u.int.8 [4](x)
u.int.32 y = (bs[0] $ S[0]) + (bs[1] $ S[1])
y = y ˆ (bs[2] $ S[2])
return y + (bs[3] $ S[3])

return F

def Blowfish_encipher(u.int.64 X, u.int.32 [N + 2] P, F) -> u .int.64 :
Xl, Xr = u.int.32 [2](X)
for i in range(N+1) :

Xl = Xl ˆ P[i]
Xl, Xr = F(Xl) ˆ Xr, Xl

return Xr ˆ P[N + 1], Xl ˆ P[N]

Figure 3: The TEA algorithm implemented in C language
typedef unsigned long word;
void code(word * v, word * k) {

word y=v[0], z=v[1];
word sum=0, delta=0x9e3779b9;
int n=32;
while (n-- > 0) {

sum += delta;
y += (z<<4)+k[0] ˆ z+sum ˆ (z>>5)+k[1];
z += (y<<4)+k[2] ˆ y+sum ˆ (y>>5)+k[3];

}
v[0]=y; v[1]=z;

}

Figure 4: The TEA algorithm implemented in theµCryptol language
exports code;

N = 32;
W = 32;
Word = BˆW;
Block = Wordˆ2;
Key = Wordˆ4;
Index = BˆW;

delta : Word;
delta = 0x9e3779b9;

code : (Block, Key) -> Block;
code ([v0, v1], k) = [ys@@N, zs@@N] where {

rec sums : Wordˆinf;
sums = [0] ##

[sum + delta | sum <- sums];
and ys : Wordˆinf;
ys = [v0] ##

[y+((z<<4)+k@0 ˆˆ z+sum ˆˆ (z>>5)+k@1)
| sum <- drops{1} sums
| y <- ys
| z <- zs];

and zs : Wordˆinf;
zs = [v1] ##

[z+((y<<4)+k@2 ˆˆ y+sum ˆˆ (y>>5)+k@3)
| sum <- drops{1} sums
| y <- drops{1} ys
| z <- zs];

};

5

5 Conclusion

In this paper, we have discussed a domain specific
programming language for the development of hard-
war/software cryptographic applications. The proposed
language is based on the well known Python pro-
gramming language, allowing a fast language devel-
opment and prototyping cycle, as well as ensuring
the grounds for interoperability with C/C++-based lan-
guages, thanks to the embedding and extension features
of Python.

Future developments will go towards a complete
implementation of the proposed language using static
compilation techniques, targeting the generation of both
C language software implementations and SystemC
hardware/software models from the high-level algo-
rithm specification.

References

[1] M. Barbosa, R. Noad, D. Page, and N. Smart. First
steps toward a cryptography-aware language and
compiler. Technical Report 2005/160, Cryptology
ePrint Archive, 2005.

[2] Joan Daemen and Vincent Rijmen.The Design of
Rijndael: AES - The Advanced Encryption Stan-
dard. Springer, 2002.

[3] I. Gonzalez and F.J. Gomez-Arribas. Ciphering
algorithms in MicroBlaze-based embedded sys-
tems.IEE Proc. Computers & Digital Techniques,
153(2), 2006.

[4] Jeffrey R. Lewis and Brad Martin. Cryptol: high
assurance, retargetable crypto development and
validation. In 2003 Military Communications
Conference (MILCOM 2003), volume 2, pages
820–825. IEEE, Oct 2003.

[5] Michael C.-J. Lin and Youn-L. Lin. A vlsi imple-
mentation of the blowfish encryption/decryption
algorithm. InASP-DAC, pages 1–2. ACM, 2000.

[6] Marjan Mernik, Jan Heering, and Anthony M.
Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv.,
37(4):316–344, 2005.

[7] Lee Pike, Mark Shields, and John Matthews. A
verifying core for a cryptographic language com-

piler. InACL2 ’06: Proceedings of the sixth inter-
national workshop on the ACL2 theorem prover
and its applications, pages 1–10, New York, NY,
USA, 2006. ACM Press.

[8] The Python Programming Language.
http://www.python.org.

[9] Bruce Schneier. Description of a new variable-
length key, 64-bit block cipher (blowfish). In
Ross J. Anderson, editor,Fast Software Encryp-
tion, volume 809 ofLecture Notes in Computer
Science, pages 191–204. Springer, 1993.

[10] Mark Shields. A language for symmetric-key
cryptographic algorithms and its implementation.
http://www.cartesianclosed.com/pub/mcryptol/,
Jan 2006.

[11] Jol Vennin, Stphane Penain, Luc Charest, Samy
Meftali, and Jean-Luc Dekeyser. Embedded
scripting inside SystemC. InForum on Specifica-
tion and Design Languages, FDL’05, Lausanne,
Switzerland, September 2005.

[12] David J. Wheeler and Roger M. Needham. Tea, a
tiny encryption algorithm. In Bart Preneel, editor,
Fast Software Encryption, volume 1008 ofLec-
ture Notes in Computer Science, pages 363–366.
Springer, 1994.

6

