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Abstract— Tiled architectures are emerging as an architectural
platform that allows high levels of instruction level parallelism.
Traditional compiler parallelization techniques are usually em-
ployed to generate programs for these architectures. However, for
specific application domains, the compiler is not able to effectively
exploit the domain knowledge. In this paper, we propose a new
programming model that, by means of the definition of software
function units, allows domain-specific features to be explicitly
modeled, achieving good performances while reducing devel-
opment times with respect to low-level programming. Identity-
based cryptographic algorithms are known to be computation-
ally intensive and difficult to parallelize automatically. Recent
advances have led to the adoption of embedded cryptographic
coprocessors to speed up both traditional and identity-based
public key algorithms. Custom-designed coprocessors havehigh
development costs and times with respect to general purposeor
DSP coprocessors. Therefore, the proposed methodology canbe
effectively employed to reduce time to market while preserving
performances. It also represents a starting point for the definition
of cryptography-oriented programming languages.
Keywords: identity-based cryptography, tiled architectures,
parallel programming model, reconfigurable architectures,
multiobjective exploration.

I. I NTRODUCTION

Since traditional microprocessors are becoming increasingly
complex, leading to high design and manufacturing costs, new
trends in architectures are moving towards partitioned register
file architectures, such astiled architectures, which allow high
levels of instruction level parallelism combined with good
scaling properties. These architectures are currently considered
for both general purpose and DSP applications.

The public key cryptographic algorithms are computation-
ally intensive, so that the current research trend is oriented
towards the adoption of application specific coprocessors,
often based on reconfigurable hardware, to reduce time to
market.

DSP-oriented tiled architectures could be used to obtain
further improvements in time to market, cost and performance,
provided that the parallel pipelines can be exploited intensively
to limit the hardware area. To this end, new programming
models are required, because standard compiler techniquesare
not able to extract parallelism from these algorithms at both
task and instruction level.

In this paper, we propose a new programming model that,
by means of the definition of software function units, allows
domain-specific features to be explicitly modeled, achieving
good performances while reducing development time with

respect to low-level programming. We show the effectiveness
of the proposed programming model by applying it to the case
of computationally intensive cryptographic pairings, which are
common in modern public key algorithms.

A cryptographic pairing is a bilinear map between two
groupsG1, G2 in which the discrete logarithm problem is
hard.

t <, >: G1 ×G1 → G2

Let P, Q, R ∈ G1 then

t(P + R, Q) = t(P, Q)t(R, Q)

t(P, Q + R) = t(P, Q)t(P, R)

During the last few years, pairings have been successfully
employed in order to resolve several open problems in cryp-
tography such as, one-round three-way key exchange [15],
identity-based encryption [6], and short digital signatures [7].
For ulterior deepenings on the protocols that make use of
pairing primitives we send back to [11], [16] and their further
references.The Weil and Tate pairings on elliptic curves over
finite fields represents the mathematical basics to construct
identity-based cryptographic primitives.These pairingsare bi-
linear maps from an elliptic curve groupE(Fq) to the multi-
plicative group of some extension fieldFqk . The parameterk is
called the embedding degree of the elliptic curve [4], [14].The
pairing is considered to be secure if taking discrete logarithms
in the groupsE(Fq) and E(Fqk) are both computationally
infeasible. For optimal performance, the parametersq and k

should be chosen so that the two discrete logarithm problems
are of approximately equal difficulty when using the best
known algorithms, with the order of#E(Fq) having a large
prime factorr. The best attack known on the elliptic curve
discrete logarithm problem is theparallel collision search that
improves on the Pollard’sρ-algorithm [34]. A pairing is con-
sidered as secure as 1024-RSA, whenr ∼ 2160, k ranges from
2 to 10, depending on the application andpk ≥ 21024. In the
wake of recent works [2], [13], [28] on pairings over general
curves over pairing friendly fields of large prime character-
istic, the proposed programming model will be aimed to the
implementation of the Tate pairing primitive in characteristicp

with k = 2 andp ∼ 2512.The current algorithm to compute the
pairing is a careful refinement of the well known BKLS/GHS
algorithms as described in [4], [14], [29]. The cryptographic
usage of the Tate pairing involves the application of Miller’s
Algorithm [22] followed by a final exponentiation. The point



P is chosen as an element ofE(Fp) with order r. The
point Q is chosen as an element ofE(Fpk) which is mapped
from the twisted curve. Miller’s algorithm uses the double
and add schema for elliptic curve point multiplicationrP ,
with some more operations to evaluate intermediate values of
the pairing that are multiplicatively accumulated to compute
the output of the algorithm [27]. Miller’s algorithm performs
dlog2 re − 1 iterations executing almost always the block of
operations corresponding to apoint doubling. Indeed, if a low
hamming weightr is used then only a fewpoint additions
will be required (e.g. 1-10). The core idea behind this work is
to investigate ways to combine instruction-level parallelism
that can be found in the implementation of multiprecision
arithmetic operations with task-level parallelism among the
finite field operations involved in the computation of pairings.

The rest of this paper is organized as follows. Section II in-
troduces tiled architectures and their interconnection structure.
Section III outlines the proposed programming model. Sec-
tion IV provides an experimental evaluation of the proposed
programming model. Finally, Section V draws the conclusions
and suggests future research directions.

II. T ILED ARCHITECTURES

Recent trends in microprocessor design are moving to-
wards partitioning processor resources such as register files,
cache banks and pipelines. InVery Long Instruction Word
(VLIW) architectures, a single program counter controls
several pipelines that access the same register file. How-
ever, this structure does not scale well, since large register
files are impractical.Tiled architectures, such as Raw [33],
Wavescalar [31] and TRIPS [26], represent an evolution of
VLIWs, partitioning the register file so that each pipeline or
cluster of pipelines (called a tile, acomputational node or
simply a node) can access a private register bank. While this
allows smooth scaling, it poses communication problems, as
data need be moved among the different pipelines, moreover,
since the register file is partitioned, communication must take
place on an interconnect network, called ascalar operand
network [32]. These issues must be dealt with by the compiler,
which is in charge of scheduling instructions not only in time,
but also in space – that is across different nodes. Explicit
communication instructions must be issued to synchronize the
register file partitions.

Tiled architectures aim at addressing critical problems in
high performance processor design, especially design com-
plexity and manufacturing fault rates, by replacing complex
processors with smaller and simpler replicated processing
elements. The typical applications range from general purpose
(for high-end tiled architectures with private data cachesfor
each node) to DSP (for more compact designs, with centralized
data cache or streaming data access). Tiled architecture fill
a niche between the static general purpose and DSP proces-
sors, and the FPGA-based reconfigurable systems. They often
expose a degree of reconfigurability in the scalar operand
network, allowing the communications among clusters to be
tailored to suit the application.

In this work, we focus on DSP-oriented tiled coprocessors
with a single control flow, since they are the direct competitor
of the FPGA and ASIC solutions for public key cryptographic
algorithms. More complex nodes, such as those of Raw (a
MIPS pipeline with private data and instruction caches) would
be orders of magnitude larger and more costly than the
industry standard solutions.

A tiled architecture is an array of nodes, where each node
is a computing element accessing its own register file and
exposing a set of private function units. When all the nodes
have the same type of function units, the architecture is
homogeneous, and heterogeneous otherwise. The migration of
the operands among clusters is demanded to a word-level com-
munication network and is controlled by special instructions
– like snd or rcv – executed by the nodes themselves, or
by dedicated hardware. This kind of architectures belongs to
the family of Scalar Operand Networks (SON), and can be
characterized by the AsTrO taxonomy [32], which specifies
whether the assignment of the instructions, the transport of
the operands and the ordering of the instructions are statically
or dynamically performed.

DSPFabric [8], by STmicroelectronics, is a tiled architecture
specifically designed for modulo scheduling computationally
intensive loops of multimedia applications. With respect to
the AsTrO taxonomy, it is a Static-Static-Static SONs, which
means that the assignment of the instructions, the displacement
of the copies and the scheduling passes are compiler tasks.

Moreover, DSPFabric is characterized by coarse-grained
reconfigurable data-paths. The compiler must select a subset
of feasible node connections for data flowing, and emits at
compile time the reconfiguration instructions that activate the
selected wires. These reconfiguration instructions changeat
runtime the network topology, tailoring it to the specific code.

The reconfiguration space – the space of feasible topologies
– is tailored by the constraints given by the availability of
I/O ports with respect to the total number of connecting
wires. In the DSPFabric organization, each node can be
potentially connected to all the others, exploiting a hierarchical
interconnection schema, based on different levels of MUXes.
Effective limitations are given by the MUXes capacity. We
describe in the following the DSPFabric architecture, focusing
the attention on the structure of the interconnections.

A. DSPFabric Architecture

Figure 1 gives an overall picture of a 64 nodes DSPFabric
coprocessor. At level 0 it can be seen as an array of four
16-issue processors (clusters), communicating through a col-
lection of multiplexers, which implements a multi input/output
switch. Each cluster hasN input wires andN output wires,
where the output wires are possibly connected to all the others.
On the contrary, the input wires can be connected to only one
source. Figure 2 shows a feasible data path at level 0, assuming
N equal to 4.

At level 1, the spatial structure replicates itself inside each
cluster, again with an array of 4-issue processing elements,
connected together by multiplexers with capacityM . The last
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Fig. 2. A feasible interconnection among clusters sets. Assuming the output
and input capacities of 4 wires, cluster set 0 and 1 have saturated their available
output and input wires, respectively

level is composed by thecomputation nodes connected through
a reconfigurable crossbar, which takes as input the internal
connections andK of the wires outgoing from level 1. Each
computation node has two ingoing wires and one outgoing
wire.

The computation nodes are single issue pipelined proces-
sors, accessing their own register file and functional units.
Since DSPFabric has been specifically designed as a loop
accelerator coprocessor for multimedia applications, each node
is equipped with hardware features for better executing mod-
ulo scheduled code [23]; e.g., the node contains support
for instruction predication and rotating registers. Precisely,
the application is scheduled using the Kernel Only Modulo
Scheduling [23] technique, which fully predicates loop pro-
logue and epilogue. Thus, branches are not allowed and the
execution is controlled by a cyclic program counter.

The copies between different register files are controlled by
thereceive primitive executed by the destination node. Two

regions of the register file are organized as input buffers, which
push on top the incoming values, but can be read randomly
by the receiver.

The coupling with the main memory subsystem is demanded
to a programmable DMA. Each node can generate an address
request, which is directly sent to DMA without consuming
inter-clusters communication patterns. Only a limited number
of requests can be served at the same time, i.e. 8 requests,
thus the compiler must ensure that the amount of simultaneous
requests does not exceed that limit. Since the memory requests
have no unary latency, the DMA engine provides input and
output FIFOs – of depth equal to the serving time – for
handling high memory pressure. When a value is ready it is
directly loaded in the requesting cluster register file.

III. PROGRAMMING MODEL & COMPILER TECHNIQUES

In this Section, we discuss the limitations of the compiler
techniques for scheduling the target algorithms on tiled archi-
tectures, and propose a new programming model to deal with
these issues. We apply the proposed programming model to
the case of the Tate pairing computation.

A. Compiler Techniques for Tiled Architectures

Tiled architectures are specifically designed for the ex-
ecution of computationally intensive kernels of multimedia
architecture. A typical scenario is to employ such machines
as innermost loop accelerators – implemented as coprocessors
and coupled with the central processing system.

Multimedia applications spend most of their execution
time in few kernel algorithms, i.e. Inverse Cosine Discrete
Transform, interpolation and deblocking filters. These loops
are characterized by largerly independent operations and low
memory aliasing, exposing a high degree of potential In-
struction Level Parallelism (ILP). Moreover these kernelsare
usually quite small – in the range from 100 to 1000 instructions
in the loop body.

The compiler is typically driven by in-code pragmas, which
select the loops to map onto the multiclustered coprocessor.
As intermediate representation the loop is described by its
Data Dependency Graph (DDG), where each node represents a
native instruction and each edge introduces a data dependence
between instructions.

The behaviour of the compiler back end is to assign the
instructions to the clusters and to schedule them, compatibly
with the communication net topology, the data dependencies
and the resource constraints. The compiler tries to extractthe
maximum degree of parallelism and, at the same time, to
limit the penalties due to explicit inter-cluster operand copies.
Different approaches have been proposed for performing clus-
ter assignment and scheduling, considering both 2-phases and
unified techniques [9], [10], [12], [20], [21].

Since these architectures are conceived for loop acceler-
ation, they typically provide hardware features to enhance
Modulo Scheduling [23] compiler technique, like support for
predicated execution and rotating registers [24].



TABLE I

IMPLEMENTATION OF THE MODULAR ADDER AS A SOFTWARE FUNCTION UNIT

add s1,a1,b1 add s11,a1,b1
add s1,s1,1 cmpgt c21,b1,s11 add s2,a2,b2 add s21,a2,b2
cmpgt c2,a1,s1.rcv c1.rcv c21 add s2,s2,1 cmpgt c31,b2,s21
slct c2,c1,c2,c21 cmp c3,a2,s2.rcv c31 add s3,a3,b3 add s31,a3,b3

rcv c2 add s3,s3,1 cmpgt c41,b3,s31
add s1,c1,m1 add s11,c1,m1 slct c3,c2,c3,c31 cmp c4,a3,s3.rcv c41
add s1,s1,1 cmpgt r21,m1,s11 add s2,c2,m2 add s21,c2,m2 rcvc3
cmpgt r2,c1,s1.rcv r1.rcv r21 add s2,s2,1 cmpgt r31,m2,s21slct c4,c3,c4,c41
slct r2,r1,r2,r21 cmp r3,c2,s2.rcv r31 add s3,c3,m3 add s31,c3,m3

rcv r2 add s3,s3,1 cmpgt r41,m3,s31
slct r3,r2,r3,r31 cmp r4,c3,s3.rcv r41

rcv r3
slct r4,r3,r4,r41

TABLE II

IMPLEMENTATION OF THE32 × 32 MULTIPLIER AS A SOFTWARE

FUNCTION UNIT USING 16 BIT MULTIPLIERS PROVIDED BY THE TARGET

ISA

and a0,X0,0x0000FFFF and b0,Y0,0x0000FFFF
shftr a1,X0,16.rcv b0 shftr b1,Y0,16. rcv a0
mul c00,a0,b0 mul c01,a0,b1. rcv a1
mul c10,a1,b0 mul c11,a1,b1
and x,c10,0xFFFF0000 shftl w,c01,16
shftl y,c10,16. rcv w and z,c01,0xFFFF0000.rcv x
add ml0,c00,y add mh0, c11, z
cmpgt r0,y,ml0 add mh0, mh0, x
add ml0,ml0,w
cmpgt r00,y,ml0. rcv mh0
add r0,r0,r00
add mh0, mh0, r0

Trying to map and schedule a complex cryptographic algo-
rithm, i.e. Tate pairing, following this programming model–
thought for different scenarios – arises several constraints and
rapidly leads to low quality or indeed unschedulable code.

When obeserved at a high level, the Tate pairing algorithm
is a single loop that presents high parallelism at the level
of operations between very long words. These operations, if
written in a high level source code asC, will appear as loops
over the length of the operands, exposing an internal degreeof
parallelism. The only way to exploit the high level parallelism
is to completely unroll all the internal loops into the outer-
most one, and then try to apply the modulo scheduling pass
over the whole loop.

This approach is computationally hard, since the scheduling
problem is NP-complete and the size of the input data in this
case (the nodes of the DDG) grows quickly – more than one
300000 nodes for a 512bit Tate pairing implementation.

We propose in this paper a novel compilation approach,
which allows to exploit the available parallelism, decoupling
the problem in two phases. The former determines the function
units needed to support the high level parallelism, the latter
programs each function unit scheduling the code at fine-grain
of parallelism.

B. Proposed Programming Model

Cryptographic algorithms that use multi-precision integer
arithmetic are representative of a class of applications that

present peculiar properties in terms of available parallelism
and program structure. Specifically, computationally intensive
public key cryptographic algorithms such as the Tate pairing
implementation in [3], [19], [30] can be parallelized attask
level (TLP), as proven by a wide range of literature on the
design of hardware implementations that typically use repli-
cated modular arithmetic circuits to exploit this type of paral-
lelism [17], [18]. The design of the individual modular arith-
metic circuits highlights the availability of a significantamount
of instruction-level parallelism (ILP): the parallel operations in
hardware can be transposed to parallel instructions in software
implementation. On the other hand,loop-level parallelism
(LLP), that is the opportunity to perform different iterations
of the same cycle on different computational elements, is less
easily found in this type of application, due to the need to
propagate loop carried data dependencies (such as the carry
propagation for the integer ormod p arithmetic) across the
iterations of a given loop. Since LLP is the type of parallelism
most easily exploited by compilers, while TLP is especially
difficult to extract by means of a compiler, these algorithms
prove particularly difficult to parallelize automatically.

To tackle this issue, our method highlights TLP and ILP
in the target algorithms, by mirroring typical hardware design
concepts, such as specialized arithmetic hardware. Specifically,
in the proposed model, the target algorithm is written using
a library of software components that perform the same
operations as specialized hardware function units for multi-
precision integer arithmetic. The codesoftware function units
are optimized for the target architecture, customizing the
connections between tiles of the architecture to fit their data
propagation schemata. Since carry propagation flows one-way
from the least significant word to the most significant one, it
makes for a very regular structure that can be easily mapped
to the configurable connections between computational nodes,
as each node needs to synchronize only with its neighbours.

Each software functional units is, on a given target archi-
tecture, characterized by two parameters: the schedule length
and the resource usage, in terms of number of computational
nodes. This characterization mirrors closely the area and
latency parameters of an hardware functional unit. Therefore, a
top-down approach can be used, applying well-known method-
ologies for the design of the controller datapath. In this way,



the high-level representation of the algorithm is mapped tothe
software functional units by means of a list-based scheduling
algorithm [5].

C. Case Study: Modular Arithmetics

The goal of this Section is to describe the design of
a basic multiprecision arithmetic library. The Montgomery
multiplier is the main element of any such library. To this
end, we need to first develop basic function units such as the
modular adder and the word-by-vector multiplication, withthe
aim of composing them to implement the main loop of the
Montgomery multiplier as described in Algorithm III.1.

Table I shows the basic schema for a modular adder.
Each column of the table represent the schedule of a single
computational node. For each word of the multi-precision
operands to add, a pair of nodes is used to speculatively
execute both the case with carry and with no carry. The
table considers the case of only three words multiprecision
operands, but the extension to larger sizes is straightforward.

1
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1 2 3 4 5 6 7 8 9 10111213 1 2 3 4 5 6 7 8

Fig. 3. Time/space scheduling of a 128-bit modular addition: the darker
shaded areas represent the non-modular adder (as describedin Table I), while
the lighter shaded areas implement the modulo operation

Figure 3 shows how the adder can be further optimized
to reduce resource usage: the modular adder unit is shown
on the left, while on the right the pipelined operations have
been compacted onto 8 computational nodes only, without
penalty for the performance. This kind of optimization, while
demonstrated only for a 128-bit modular adder, seamlessly
scales to larger input sizes, requiring only 8 nodes and2n+6
clock cycles, wheren is the number of words of the input.

Table II provides an implementation of the basic 32 bit
multiplier unit using 16 bit multipliers provided in the target
architecture. The word-by-vector multiplication is obtained by
juxtaposing 32 bit multipliers, followed by a multiprecision

(non modular) adder unit that handles carries. This method
of obtaining larger units by composing smaller ones is fully
developed in the generation of hierarchic software function
units: an adder and the word-by-vector multiplier are used to
design the Montgomery multiplier.

The Montgomery multiplier is based on the core loop shown
in Algorithm III.1, whereA and B are the input operands,
while N is the modulus,w is the size of the word,b = 2w

andN ′

0
is the least significant word of the modular inverse of

N , modulo the Montgomery radix. In this implementation, the
number of iterations performed isn+2 to bound the result in
the range[n, 2n] for multiplicands up to2n. This is achieved
by eliminating the final subtraction in the original Montgomery
algorithm and, as a consequence, after the inputs are converted
in the Montgomery domain, the operations of the high-level
algorithm are all performed therein.

Algorithm III.1 : Montgomery multiplier core loop

x← 01

for i← 0 to n + 1 do2

if N ′

0
x0 mod b 6= 0 then3

x← x + tN4

x← x >> w + AiB5

return x6

Note that the composition of the larger function unit takes
into account the shape of the scheduled code of the component
units: by compacting the pipelined computations, it is possible
to achieve a performance gain that would not be possible were
the components implemented as functions. C functions either
require call mechanisms that enforce a barrier synchronization
between the two computation steps, or inline mechanisms that
would lead back to the explosion in the nodes number of the
dataflow graph.

D. High-level Scheduling

Given the software functional units described in Section III-
C, in order to implement a public key cryptographic primitive,
we need to encode it in terms of the software functional units.
Then, we can explore the possible high-level schedules by
means of automatic scheduling tools, such as those presented
in [5].

For the Tate pairing algorithm in characteristicp, Figure 4
shows the dataflow graph of the doubling step of the core
loop body. The nodes are arranged so that high-level paral-
lelism is emphatized, following an ASAP scheduling policy
with no resource constraints, thereby showing the maximum
available parallelism at any given time. The figure highlights
the presence of a significant amount of parallelism, making
the exploration of performance vs. area tradeoffs worth being
conducted.

The typical structure of the Miller’s algorithm, upon which
the implemented Tate pairing algorithm [27] is based, includes
a conditional branch that is only taken when the scan of
binary expansion of the scalarr (see Section I) meets a 1.



Cycle-carried dependency

z1s=s(z1)

z1ss=s(z1s)t10=*(qx, z1s) t14=*(qy, z1s)

x1s=s(x1)

t2=-(x1s, z1ss)

y1s=s(y1)

t4=*(x1, y1s)y1ss=s(y1s)

t6=*(y1, z1)

z3=<(t6, one)

m0s=s(m0)

t0=-(m0s, m1s)

m1s=s(m1)t17=*(m0, m1)

t1=<(t17, one)

l2=<(t4, two)t5=<(t4, tre) t9=*(y1, z3) t15=*(z1, z3)l3=<(y1ss, tre) t11=+(t10, x1)

n1=*(t14, t15)

t20=*(t0, n1)

t18=*(t0, n0)

t19=*(t1, n1)

t21=*(t1, n0)

t3=<(t2, one)

l1=+(t3, t2)

t7=-(l2, x3)

x3=-(l1s, t5)

y3=-(t8, l3)

n0=-(t9, t13)

t13=*(t12, t11)

l1s=s(l1) t12=*(l1, z1)

t8=*(l1, t7)

m0=+(t18, t19) m1=-(t21, t20)

Fig. 4. High-level scheduling of the dataflow graph for the doubling step of the Tate pairing algorithm [27].< is the modular left shift operator,+/− are
the modular adder/subtracter, and∗ is the Montgomery multiplier

The implementations ensure that the Hamming weight ofr

is minimal – in the range of 1 to 10. Since this operation is
rarely executed (less than 1% of the iterations), it is handled
in a tiled architecture such as DSPfabric by the intervention of
the controller processor, which causes the coprocessor control
to flow from the main iteration loop to a secondary code
that is optimized for the branch execution. The alternativeof
predicating the branch code is feasible, but the size of the
secondary code and the fact that the primary path is much
faster (it has no instructions to execute) would cause the
predicated code to negatively affect the performance.

IV. EXPERIMENTAL RESULTS

In this Section we provide experimental evidence to support
the effectiveness of the proposed approach. First, we gauge
the complexity of the software function units in terms of
both area (that is, number of CPUs) and latency. Table III
summarizes the complexity data for the simpler units, while
Tables IV and V show the complexity of two different imple-
mentations of the Montgomery multiplier. Analytically, these
data can be derived from Equations 1 and 2, where Equation 1
represents the basic version of the Montgomery multiplier,
while Equation 2 refers to the area-optimized version of the
same unit that splits theAiB word-by-vector multiplication
in Algorithm III.1 to execute it in parallel withtN and the

TABLE III

COMPLEXITY OF SOFTWARE IMPLEMENTATIONS OF FINITE FIELD

OPERATIONS IN TERMS OF NUMBER OF INPUT WORDSn = dlog
2

me�w

Finite Field Operations Clock Cycles # of CPUs
x ± y mod m 2n + 6 8
x · y mod m (n + 1)(2n + 19) 2n
x << z mod m 2n + 2 8

subsequent addition, to reduce the number of processors used.

T = (n + 2)

(

52n

cpu
+ (2n + 1) + 5

)

(1)

8 ≤ cpu ≤ 4n

T = (n + 2)

(

26n

cpu
+ max

{

26n

cpu
, (2n + 1)

}

+ 5

)

(2)

16 ≤ cpu ≤ 2n

In these equations,n is the number of input words, whilecpu

is the total number of nodes in the tiled architecture.
In order to evaluate the effectiveness of the high-level

scheduling, we perform a multiobjective exploration of the
design space defined by the architectural parameters, that is
the number of Montgomery multipliers, modular adders and
shifters available in the system, as well as the implementation



TABLE IV

EXECUTION TIME AND TIME /AREA PRODUCT FOR THE SOFTWARE

IMPLEMENTATION OF THE MONTGOMERY MULTIPLIER AS A FUNCTION OF

INPUT WORDS AND NUMBER OF EMPLOYEDCPUS

Input Number Time Time × Area
sizen of CPUs [clk] [clk×#CPU]

4 8 200 1600
4 16 135 2160
6 8 399 3192
6 16 259 4144
8 8 666 5328
8 16 432 6912
8 32 315 10080

16 8 2414 19312
16 16 1530 24480
16 32 1088 34816
16 64 867 55488

TABLE V

EXECUTION TIME AND TIME /AREA PRODUCT FOR THE SOFTWARE

IMPLEMENTATION OF THE MONTGOMERY MULTIPLIER USING HIGH LEVEL

PARALLELIZATION , AS A FUNCTION OF INPUT WORDS AND NUMBER OF

EMPLOYED CPUS

Input Number Time Time × Area
sizen of CPUs [clk] [clk×#CPU]

8 16 315 5040
16 16 1088 17408
16 32 867 27744

of the Montgomery multipliers employed, as described in
Tables IV and V.

Figure 5 sketches the Pareto frontier for the multiobjective
exploration problem of finding the best configurations in terms
of both area and latency.

The notion of Pareto optimality, states that a solution is
optimal if it is impossible to find a solution which improves
on one or more of the objectives without worsening any of
them. If one solution is better in one objective than another
solution and not worse in any other objectives, the latter is
dominated by the former, which is always preferred. This set
of solutions is called the Pareto frontier and is guaranteed
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Fig. 5. Pareto frontier for the area/latency tradeoff as a multiobjective goal
function

to contain all optimal solutions, whatever way the individual
objectives are weighted relative to each other. To put it in
other words: the Pareto frontier exactly captures the available
trade-offs between the different objectives.

Note that the Pareto frontier shown in Figure 5 gives a set
of possible solutions. Then, time or area constraints should
be applied to select the best solution. If no constraint is
specified, then it is possible to observe that the optimum point
using a time× area figure of merit is the architecture with 4
Montgomery multipliers, each implemented on 16 nodes, plus
one shifter and one adder, which needs just over 1 million
cycles to perform the entire pairing primitive.

However, if the goal is to optimize time, then, by employing
large hardware resources, it is possible to cut down the
execution times by 30%. On the other hand, if a compact
device (e.g., 48 CPUs) is required, there is slowdown by a
factor of 2 with respect to the time× area optimum.

The exploration also allows to better evaluate the implemen-
tations of the individual units. In our case, it shows that the
16 CPUs Montgomery multiplier implementation is superior
to the equivalent implementations on 32 or 8 CPUs.

Comparing our approach with FPGA competitors is dif-
ficult, since related works [17], [25] are based on different
arithmetic, while the current trend is to employmod p-based
cryptosystems (see Section I). Moreover, while for processors
is it possible to obtain area estimates, the measurement of the
physical area of FPGA implementations is widely dependent
on CLB interconnection and pin layout. Therefore, the CLB
count of an FPGA implementation gives no clue on the actual
area occupied by the design. For the proposed implementation,
coprocessors based on DSPfabric size at a 7 mm2 die for 64
nodes, which is a mean figure with respect to the range of
possibilities illustrated in the experimental evaluation.

On the other hand, a comparison can be given with a high-
end embedded processor such as the 32-bit StrongARM, which
is reported to execute the same pairing computation in over
60 million cycles [27].

With respect to competitor technologies, tiled architectures
using the proposed methodology give the following advan-
tages: smooth scalability (tiled architecture provide excellent
scalability properties w.r.t. standard VLIW or superscalar
architectures); quick development cycle (almost as fast as
software development).

V. CONCLUDING REMARKS

In this paper, we propose a novel programming model
for tiled architectures, suitable for computationally intensive
public key cryptographic applications.

Our proposal is supported by a case study on the DSPfabric
reconfigurable tiled architecture, focusing on the implementa-
tion of the Tate pairing primitive, which is at the core of all
identity based cryptographic protocols.

Results prove that large amounts of parallelism can be
extracted and exploited, yielding speedups of one order of
magnitude with respect to state of the art software implemen-
tations.



As a future development, the metodology developed in this
work could be fully automated, by designing a dedicated pro-
gramming language and its compiler toolchain and integrating
the scheduling algorithm within the compiler backend.
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