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Abstract—We propose a methodology for the earl The first assumption is the conceptual basis for the
prop gy Yy p p

estimation of communication implementation choices ef- abstractcommunicatiorsynthesis approaches. The sec-
fects, starting from an abstract transaction level system ond assumption implies that it is possible, starting from
.mo?]el g'S-“CA?'II)he ref?;ence Vﬁrfj'oln of TL'\S cog&derer:j a purely functional description, to compare different
Is the OSCI library. The methodology Is based on the ;410 meniation choices without having to directly refine
computation of metrics that abstract useful information a model or to generate a prototype. The information

from the initial system model. The metrics are precisely )
defined upon a general, formal model of transaction €Xtracted from the analysis of the abstract system model

level system descriptions. A set of design problems ofcould be exploited to guide architectural choices to
relevant interest, such as shared communication resourcesdetermine the number and type of resources to employ.
assignment, pipelining partitioning, bandwidth and latercy Furthermore, such information can drive the automatic
constraints estimation, is considered to show some poten-synthesis of parts of the system, to drive automatic
tial applications of the metrics proposed. algorithms in achieving optimal or satisfying results
(such as, for instance, various types of resource sharing).

|. INTRODUCTION :
A. Design problems addressed

The aim of this work is the definition of an analysis The imp|ementation of a high_|eve| communication
methodology of the communication properties in a highnodel requiresnappingonto physical components, that
level system model. This information provides a suppgfcludesresource sharingperformance(bandwidth and
to the designer in gaining a better insight on the systegtency) estimation dimensioning(of buses width, for
characteristics. The outcome of the analysis can Retance).
exploited by the designer to perform a better partitioning |n this context,mappingmeans finding a correspon-
of the system and to obtain a more effective synthegjgnce between the communication channels of the model
of the communication parts. and the physical channels of the target platform. An

Simulation-based validation through executable mOﬁnportant problem is to decide what model channels
els of a system is commonly employed in the embeddggn be mapped onto the same architectural elements
systems design community in the first phases of thgsource shariny To this aim it would be useful to
design process to evaluate the different architectut@low what model communication channels are most
alternatives. Typical advantages claimed in favor of thigely to be activated at the same time, risking to cause
adoption of such models are that they can help in bettgcess conflicts. This problem, if addressed with brute
understanding the specification, allowing to highlightbrce simulation approaches, is computationally very
unnoticed ambiguities, and that they can act as a forng@mplex (the number of configurations is equal to all
reference for the system implementation. the possible partitions of the communication channels

The ability to model communication without specifywith a given number of classes, a number that diverges
ing an implementation choice allows easier and fastetpidly).
writing of the system models that can be usedua-  Performance estimatioand dimensioningare strictly
tional specification of the system. interrelated. In particular, it would be interesting to kno

Still, part of the current EDA research effort origiin advance the effect of given dimensioning choices on
nates from the assumption that such models implicitthe performance of other parts of the system. Exemplify-
contain information that would allow the automatic iming, a typical problem could be: let the communication
plementation of the communication between the systathannelA be implemented with a component that can
components and the early estimation of its effects @uarantee at most the bandwidihhow will this affect
performance. performance of the communication on chan@&l Will



this choice impose an upper constraint on the bandwidth
of C? Even for this problem, a brute force simulation
approach would be impractical.

The intrinsic complexity of a simulation approach to I
these problems suggests the exploration of static analysis
techniques, which would be valuable to support the l

TLM Model

Static Analysis

designers in making effective choices by better under-
standing the specification features.

In our work we determine the information that can be (Communication Resources)
obtained statically and that can be useful for the soluti
of the problems considered.

This information can be either structural, identifyin

the communication dependencies, or relate to commu-

nication performanceCommunication Dependencies In- [ e ] [ Type ]
formation allows detection of such dependencies, that
may be hidden, but allows also the estimation of the
communication load and latencCommunication Per-
formance Informationcan be either local or global.
Local performance can be characterized by latency and
throughput of specific communication channels. Global
performance allows the identification of possible bottle- —> RESOURCE
necks but also the detection of the available parallelism. SHARING
Dependencies Informationan be valuable indepen-
dently from Performance Informationor be exploited
as a basis for evaluating the latter.

Communication Architecture Definition

HW/SW Partitioning

Communication implementation

PIPELINING

Fig. 1. Overview of the implementation of system communérat
by exploiting static analysis

B. Proposed methodology

The analysis methodology proposed in this paper airﬁs Paper organization
at the extraction of the above information by means The rest of this paper is structured as follows. Sec-
of a static analysis of the early, transaction level bas#@in Il provides an overview of the related works. In
executable model. Section Il the input SystemC subset to which the

This is obtained by defining a set ofetricsthat can @nalysis can be applied is defined. In Section IV we
be statically computed. The role of the analysis in an infitroduce a mathematical representation of the system,
plementation flow (here emphasis is on communicatiét$ed in section V to define the metrics. Some compu-
implementation) is shown in Figure 1. tation examples_ are provided in sgction VI. _Section Vi

It is worth noting that the metrics proposed are not if10Ws the application of the defined metrics to some
a one to one correspondence with the information catélévant design problems such as shared communication
gories mentioned. The link between their estimation afBSOUrces assignment, pipelining partitioning, bandwidt
the achievement of the desired information is obtain&fd latency constraints estimation. Section VIII provides
with a further processing step. Nevertheless, metrics &#2rger application scenario based on an industrial case.
formulated with these goals in mind, so it is possiblEinally, Section IX draws some conclusions.
to apply each of them in the estimation of a particular
information category among those specified. Il. RELATED WORKS

Among the system level design formalisms available, Metrics computation has been widely used in the fields
we choose to analyze SystemC Transaction Level Moo hardware/software codesign and power estimation.
els as defined by the Open SystemC Initiative con- Static metrics are used to estimate affinity between
sortium (OSCI). The OSCI TLM library was designedunctional elements, to allow some form of clusteriza-
to obviate to the lack of standardization in Systemfon, aimed at the partitioning of the system. A wide set
Interface Method Call (IMC) formalism used to describef behavioral metrics have been developed by Vahid [11]
communication at a high level of abstraction. for system-level partitioning.



TABLE |

Static analysis of SystemC models is also used in [9], TLM | NTERFAGES SUMMARY

for the timing analysis of descriptions based on parallel

communicating processes. The analysis, in this case; iSerface Data  Synch Methods
; FAi ; h flow  type

aimed at determining some temporal propertles of t"“taTm_bIocking_geLif blocking e

system such as the worst-case response time. tim_blocking peekif blocking peek()

blocking put()

non-blocking  get(), nlcanget()
non-blocking  peek(), nlzanpeek()
non-blocking  put(), ntcanput()
blocking transport()

Transaction level modeling was first introduced injm-lockingputif
o . ) m_nonblockingget.if
hardware specification languages in SpecC [13], and lat&fn_nonblockingpeekif
developed under the name of behavioral wrappers in [12}[2-3‘;:22’:5;{‘9p““f
and as Functional Interface by the VSIA [4]. -
The problem of the implementation of transaction

level models has been addressed by Grotker et al. in [3}e jmplementation technology. The work is extended

Here the authors show how to use SystemC 2.0 0 171 \yhere three metrics are addetbad indexes

_refine high Igvel models int_o descriptions closer to t%mmunication indexemnd physical cost indexThese
implementation; the analysis focuses on the modelifgerics are meant to be computed to support system
capabilities of the language, that allow the ref'nemeBErtitioning, and give information on aspects such as

of the description towards its implementation, rathgfie najance between computation and communication,
than proposing a methodology for the synthesis of SuBtr'bcessor loads, and implementation cost.

models. Moreover, the problem of describing abstractm [2], we defined a set of metrics potentially useful

models at the transaction level is extensively considergg v, estimation of the effectiveness of several commu-
In [5] the authors present a set of metrics that extragh:iion implementation choices. In this work, the set of
from C specifications, information that characteriz€feyics presented in [2] has been significantly extended
system behavior with respect to three different aspeqiiy, the introduction ofexecution dependemtetrics,
potential parallelism available, amount of memory acCeggyt aliow to take into account statistical analysis on
operations, amount of control component. The metrigs, estimated information. More details are provided in
are defined and computed relying on a hierarchicgl tion v, Moreover, in this work, specific applications
graph representation of the initial C specification. M} 1o nroposed metrics are formally defined and tested
rics values provide information that can be exploitegn a design example. Another significant improvement
for architectural choices such as component pipelinin(g\,/er [2] is the definition of a precise mathematical

memory access optimization effectiveness, amount Qhoyaction of a SystemC transaction level model.
architecture parallelism. The approach presented in [5]

is somehow similar to that of the present work, in that
it aims at providing designers with statically computable
information, useful for certain architectural choiceseTh
results of [5] are complementary to what here presented,This section summarizes the definition of the core
in the sense that the concerns addressed are fairly differansaction Level Modeling library, proposed by OSCI
ent: we focus on the communication architecture rathas a standard for this level of abstraction. The library
than on the choice and design of the processing elemergdreely available for download from the OSCI site [1].
Another approach supporting design choices by meahs explained and motivated in the previous section, this
of statically computed information can be found in [8]TLM formalization will be considered as definition of
In this work, the information extracted from C basethe language input for the metrics computation.
specifications is exploited to estimate whether given codeThe TLM formalization proposed by OSCI (simply
is most suitable for general purpose processors, digitfLM” in the rest of this paper) is, in its essence,
signal processors, or on application specific integratedmposed of a set of predefined, parametric base in-
circuits. Entry point of the computation is a C specifiterfaces. Whereas a SystemC interface is composed of
cation, that is translated into a control data flow grapgm arbitrary set of method signatures, TLM provides a
based representation. A set affinity metricsbetween fixed base set of defined interfaces, each with a given
the code and the three implementation technologies amember of methods, whose semantics is determined.
then computed on this representation. Metrics are basddM interfaces are characterized by three main choices:
on the taxonomy of instructions of the intermediatehether their methods have a blocking or non-blocking
representation, with respect to their supposed affinipghavior, whether the data transmission is bidirectional
with different architectures. Affinities are then computedr unidirectional, and what kind of data is passed when
as the fraction of instructions of the class affine tthe interface methods are invoked.

rirrinae

I[1l. SYSTEMC TRANSACTION LEVEL MODELING
DEFINITION



Given these basic characterization criteria, TLM dex read across a bus or a network packet transmission,
fines a set of seven interfaces that represent homoggthout breaking them down in smaller components or
neous communication transactions, as shown in Tabledquiring more resources than what is needed.

A SystemC model is TLM compliant if all its channels
implement only interfaces among those listed in Table |
All the interfaces are parametric with respect to orfe. TLM 2.0 Extensions

(unidirectional) or .tWO (blldlrectlonall) data types. The need for features not present in the initial TLM
In the rest of this section, we will deal with the two

in feat  those interf . data flow directi specification has led to the development of a second
main features ot those intertaces. data flow direclion anll\; standard proposalTLM 2.0. TLM 2.0 presents
synchronization, since these features of TLM mode

g . ) . . 2veral novel or variant abstractions, mainly aimed at
wil _be exploited n the analysis presented in the ne proving performance, allowing finer timing specifica-
Se"t'o’ﬁs- A more '”'deF’th coverage of SystemC TLWon and augmenting the expressive capabilities of the
modeling can be found in [6]. formalism. While TLM 2.0 is still in its second draft
form, it is worthwhile to consider how the proposed
A. Synchronization extensions will affect the methodology proposed in this

SystemC allows the description of modules behapaper.
ior with two types of processes: S@ETHOD and First, a new transport interface has been defined,
SCTHREAD. The main difference between the twavhich, instead of performing bidirectional data flow,
is that an SCMETHOD cannot suspend its executiortoncentrates information into &ansaction argument.
waiting the occurrence of an external event, whil€his allows faster simulation, but preserves the transport
an SCTHREAD can do so. Suspension, in System@Gemantics.
is achieved through invocation of thevait method.  For timing expressiveness, a new level of accuracy,
SC.METHODs cannot invoke a wait() statement, notalled loosely-timed is introduced. The possibility of
they can invoke any function or service that invokes igxpressing timing information is present in TLM 1.0 as
Adopting a widespread terminology, OSCI cafien— well, though not in a standardised form. Our work is
blockingany function thais guaranteechot to call any focused on the analysis of functional specifications, with-
wait, directly or indirectly, andblocking all the others. out timing information. Thus, the new level of timing
This concept is formalized in TLM: all the interfaceaccuracy does not affect the system models considered
methods are characterized msn-blockingor blocking in the rest of the paper.
depending whether they guarantee or not that callingBeyond some syntactic adjustments, the proposed
them will not lead to a wait() suspension. methodology applies indifferently to TLM 1.0 and TLM

Non-blocking interfaces provide methods to check 0 models at the untimed functional level of abstraction.
whether the non-blocking request is likely to succeed

(e.g.,nb.canged) and methods that return astevent
that is notified when the non-blocking action, if called, IV. SYSTEM REPRESENTATION

would likely succeed. These primitives allow the de- . . . .
Y P In this section, a mathematical abstraction of the

signer to adopt synchronization models for the nog- \ . ,
gne Pt sy E]’LM SystemC models is presented. This representation
blocking control scheme that are closely modeled on

: . , .~ _serves as basis for the definition and computation of
the interrupt and program controlperipheral interaction o o o )
modes. the communication estimation metrics in Section V. In

the remainder, the structure of this information will be
o referred to adOIR, that isMetric Oriented Intermediate
B. Data flow direction Representation

In addition to managing different types of synchro- A MOIR of a given model is basically aannotated
nization methods, TLM provides both unidirectionpgli{ graph of connected components:
or gef) and bidirectional tfanspor) transactions. The
rationale behind this choice is that any arbitrarily com- D=<MUFE>
plex communication protocol can be broken down into a
sequence of unidirectional (or bidirectional) transawsio Where M is the set of components arid is the set of
On the other hand, the possibility of defining botedges.
unidirectional and bidirectional communications allows The components are defined according to the OSCI
to easily model different types of interactions, such d4.M interpretation of SystemC [6].



A. Components The Control Flow Graph of a process is a directed
graph in which each node representbasic block that

is a sequence of statements that have a single entry and a
single exit point. The edges of the Control Flow Graph
represent the flow of program control from one basic
block to the next. According to the purposes of our

processesbelonging tom. Processes, in a Systemcanalys's’ only communication activities are considered

module, describe the reactive behavior of a componeﬁ?le\{am.' Cons_equently,_ qll node_s that do not con'Fa.un a
. , . .. service invocation, a wait invocation or an event notifica-
A port p is defined agp =< id,,i, > whereid, is

a unique identifier and, & I7,;. It can be interpreted tion are collapsed, and the result is the Communication

) . . Control Flow Graph.
as an interfaceequiredby a given modulen. A process can then be represented as a tupie<
A module classm such thatl,, # ( is defined a P P

. o idy, C >, whereid; is a unique identifier and’
channel classA channel, in SystemC, is in fact any. ", for o q fou
. is, the Communication Control Flow Graph.
module that offers some TLM service. The set of channel L
From the Communication Control Flow Graph, we

cIagsech IS :herefgretdeflnedfﬁcdzl{mlylc 7 w}d G c(im extract different sets of elements characterizing a
ompqnen 8 are ins ance; of module classes, de |n(laD ocess:
asc =< id., m. > whereid, is a unigue identifier and s . .
m. is a module class. The sets of module components’ the _Set.et of eygn_ts t_he process is sensitive to (that
M and of channel components C M are also defined. "ﬁe In |tise?5|t|V|ty I'Sg’ q
M is the set of all the instances of module classes in the® tn?['lsr?g?f':at'?)\r/wems the process can suspend upon
unti ification;
system, and” = {c|I,,,, # 0}. e .
In the remainder of the paper, we will refer to ports ° the set of even_tst |Ct_can notify;
P., interfacesl, and processeg, of a component =< « the set of servicesy it can call through the com-
id.,m. >, meaning the port,,_, the interfacesl,,, ponent ports.
and the processés,,  of the module classn..

A module classm is defined as a tuplen =<
idp, Im, Py, Tn, > Where id,, is a unique identifier;
M¢ is the set of module classes$;,, C Irry is the
set of interfacesimplemented by the module class;
P,, is the set ofports of m; and T,, is the set of

C. Services and Interfaces

In SystemC channelsmplementservicesthat can be
invoked by other modules to achieve communication.

For our purposes, the most interesting distinction @fn interfacedefines a set of methods that are provided,
processes in Transaction-Level Models is betweth- together, by a channel.

odsandthreads The notable difference between the two In MOIR, an interface can then be represented as a
is that the former are guaranteed tortmn-blockingthey tripleti =< b,d, T' >, whereb represents the blocking or
cannot suspend themselves and cannot indidkeking non-blocking characteristic of the services of the inter-
servicey, while the latter can beblocking A formal face;d € {r,w,rw} represents the uni-directional or bi-
specification of the synchronization properties will belirectional characteristics of the interfaces, togethign w
given in Section V. the data flow direction (outcoming or incoming); and
Processes belonging to different modules can com-c DataTypes represents the data template parameters
municate viaservice invocationswhich provide a point- of the interfaces.
to-point form of communication between a process (or The set of all interfacedr ), is composed of the
a service) and a service. To allow intermodule processven Transaction-Level interfaces defined in [6], para-
to process synchronizatioayentsare employed. Eventsmetric with respect to the data types.
implement the rendez—vous synchronization semantics. The building blocks of the interfaces are thervices
Each event is represented by a unique identifier (trat is the methods that a component provides when
tag). An event can baotified according to SystemCit implements a given interface. Bervice signatures
execution semantics, and it is possible for a thread fepresented by a pair, =< id,,is >, whereid, is a
wait for it to be notified. unique identifier and; € Iy, is an interface.
In MOIR, processes are characterized by thieim- Servicesare associated with component classes, and
munication Control Flow Graphthat is a graph that can be defined as tuples=< ¢, s, C fgs >, wherec is
is obtained from the classic&ontrol Flow Graphby a component class;; a service signature and fg; is
collapsing all nodes that do not represent a servidtee Communication Control Flow Graph associated with
invocation, a wait suspension or an event triggering. the service.

B. Processes and Events



From the Communication Control Flow Graph we cathe set of ports that will connect to interfaces provided by
extract different sets of elements of interest for eathe system environment, afd, . is the set of processes

service: in the system. Thenng can be instantiated in a system
« € the service can wait upon for notification; as any other component. In a hierarchical model, we
. a set of of events! it can notify; will therefore callMg the set of components instantiated
. a set of other serviceg it can call. within the top-level componert.

In the rest of this paper, sample models that have a
single level of hierarchy will be considered. This is not
_ _ . _ _ meant to represent a limitation of the metrics or of the
A services is non-blocking when it never waits foryepresentation, but rather a simplification that allows an

event notification €y’ = (), and it never calls a blocking gasjer presentation of the discussed issues and solutions.
service. The TLM non-blocking interfaces guarantee that

both properties are respected by every non-blocking
services. V. METRICS DEFINITION

As far as processes are goncernMIhodsare guar-  so far, our model provides topological information
anteed to be non-blocking, since they comply to the sagf the presence of communication between computation
constraints as the non-blocking services. nodes. We want to enrich this information by specifying

For a method, ¢; # () because the method is sensitivgoth qualities of the connections, such as the size of the
to a predetermined set of events, defined outside &ta tokens passed through them and the direction of the

D. Synchronization Properties

Control Flow Graph. information flow, and qualities of the nodes, such as their
memory occupation.
E. Connections We also want to add information about the depen-

Connectionsepresent the binding of module compodénces induced by synchronization statements.

nents (module classes instances) to channel components
(channel classes instances). Formallgamnectione is A communication Width
represented by a tuple=< m,¢,p,i > wherem € M , o _ )
is a modulec € C' is a channelp € P, is a port ofm Thesg metrlcs_prowde mformatlon_on the width of the
andi € I is an interface implemented by the chanael tokens involved in the data transactions.
The setE of all the connections in the system is also L€t us first define the widthV" of a data typet €
the set of edges of the system representation graph. DataTypes as W (t) = sizeof(t), and the width of a
A constraint is imposed on the connections, so thiultisetD of types asiW (D) = 3, , W (t).
every port connects to one and only one channel. NoFor & services of an interface: =< b,d,7 >,
such constraint is imposed on channel interfaces, so aW§h signature identifierl; we can define the widthil’
number of ports requiring the same interfacean be as W(s) = W(i) = W(T). Services with signature

bound to the same channel that implemeints identifier ¢ or e, have a conventiondl/’(s) = 0.
Let © be a polymorphic operator such th@, @) is

E Extension to Hierarchical Models a commutative monoid. Then, for a chanaegl

So far, a MOIR describes a “flat” system. Actually, it Wi(e) = @ W (i)
is desirable to be able to describe hierarchical models, i|3e€E ,e=<m,c,p,i>,Ym,p
where a module can in turn be composed of several ) ]
sub-components connected via services and synchronBad for @ pair of module and chanrigh, ¢), Communi-
tions. cation Width can be defined as

The MOIR can be easily extended to describe such )
hierarchical models: cons?:jer a systesh defined in W(m,e) = @ Wi
MOIR, where a set of services and a set of ports are

implemented (respectively, required) by a special black| et us now define the Communication Widt be-
box component, theystem environmenif we consider yyeen two modules connected through a set of channels.

S as a module class, the system environment is th§st we define the width of the communication between
generic system in which can be instantiated. Thereforeyyo modules through a single channel:

S can be seen as a module clasg wherel,, . is the set A
of interfaces offered to the system environméehy,. is W(my,ma,c) = W(my,c) @ W(ma,c)

t|Je€ E,e=<m,c,p,i>,Vp



TABLE I

Now we can define the communication width between
OPERATORS OVER THEA DOMAIN

nodes connected through an arbitrary number of chan-

nels: @l r w mw c — |

rlr mw rw r r T w
. W rw w rw W w r
C’(m1,m2) = {C|E|el =<my,c,p1,i1 >,e1 € EA wlm m ow w w | w
362 = (m27c7p27i2),62 S E} c r w rw c c c
W(m17m2) = EB W(ml,mQ,c)
veeetmms) given asD(p) = —D(i). So, for a single component

These definitions identify a family of metrics, param”® €M,

eterized by the operatap. Some significant operators ,
would be, for example, the addition and the maximum. D(m) = @ D(p) + @ D(i)
The former would define a metric that computes the bit pEFm 1€l
size of all tokens that can be exchanged between tw ;
modules, while the latter would computg the largest datz;)':Or an ordered pair of nodes;, n
token exchanged. Both metrics would be useful, though N .
for different pgrposes. ’ Dini,nj) = D D)
These metrics can be used to estimate the size of
the communication medium needed to implement the This metric can highlight unidirectional communica-
connection. For instance, if the medium were a paralighns between modules, therefore suggesting implemen-
bus, these metrics could be used to estimate the numigion choices such as pipelines, FIFOs for hardware-
of lines required. hardware solutions; for software-software systems, this
could affect the implementation of interprocess com-
munication, for instance revealing the need for locking
policies.

), we define

ez(ni 15 sPe 7ie)eE

B. Directionality

The directionality metricD accounts for the nature of
communication between two modules, and attempts to
detect whether the connection is read- or write-only, @. Memory Size
the communication includes control information only.
For service §|gnaturesD(m) = d € {rwrwc space of the elements of the system.
where the possible values 6f(m) represent a read-only, _
write-only, read/write or control-only communication, Let Vary, be the set of all attributes of moduh
The control-only communication is exemplified by théhat are n_ot modules themselves. We can define the
control operations of the non-blocking interfaces. TH4EMOrY Sizesize(v),v € Vary, as the actual memory
read only, write-only and read/write communication argccupation fqr that attribute, as given by thezeof
respectively, theput, get and transport services. This Ct expressmn. ,
information is immediately available from the MOIR Thensize(m) can be defined as:
representation, and is the starting point from which

Memory Size metrics estimate the size of the state

the metric can be computed on pairs of modules and size(m) = Z size(vj) +
channels. vjinVarm

To define D for interfaces and modules, we need a + Z size(m;)
binary operatorp over the domainA = {r, w,rw, c}. mi €My,

We also introduce a unary operater that will be
interpreted as a direction reversal. The semantics of than the case of a non-structured module,, = (), so

two operators are described in Table II. the Memory Size is just the memory occupation of that
We can now define module.
Dii) = D These metrics can discriminate different implementa-
(i) = @ (m) tion options, depending on the size of the state space. It
met

is possible to choose between combinatorial (as a bus)
for an interfacei € Irry, and we can say that theand sequential (as a shared memory) communication
directionality of a portp that requires an interfaceis solutions.



D. Execution Classes
In order to collect information on the number of

service invocations and synchronizations performed by CS

a given service or process, we define tBgecution

Classes This is a kind of intermediate metrics, which \

will be used to define a set of metrics such as minimum wait(buffer_full)

or maximum number of invocations.
The Execution Classe&C of a given services or
process are defined as follows.
« For the simplest service Communication Control out_burst_port:put
Flow Graph, composed of a single invocation of
a services; (or equivalently, of a single synchro- i
nization primitive), EC = {< s;,1 >} (or, in
case of wait or notify primitives on an event,

notify(buffer_empty)

EC = {< w*,1 >} or EC = {< n,1 >}, i
respectively);
« For a Communication Control Flow Graph includ- @

ing a sequence of service invocations or synchr'c:),— , E e of C cation Control Flow Graoh
. . 1g. 2. Xample O ommunication Contro ow Gra|
nizationss; ... s,, EC = {<s1,1 > < s,,1 > g P P

h

o« For a Communication Control Flow Graph includ- . .
: : : P . The Execution Frequenc¥'Cs,(C,s;) of a service
ing a sequence of invocations of the same service 2

o s1 In servicesy (or in procesg) for an Execution Class
or synchronizations on the same eves,. .. s, : ,
] C is defined as the value of the second element of the
EC ={< s;,n>}

o For a Communication Control Flow Graph mad(tauloIe < 51,7 > In that Execution Class oé; (or ¢,

of a loop construct (i.e., a cycle in the graphsespectively). , . -
containing a subgraply such thatEC, — {< Then, we can define a Maximum (or Minimum) Exe-

sin >}, EG = {< s1,[n,n x k| >} where k cution Frequency by defining:

is the maximum number of iterations of the loop, EF™®(s1) = mazcECs,(C, s1)
k = oo if there is no known bound:; 2 e

o For a Communication Control Flow Graph includ- Eme(sl) = mincEC,,(C, s1)
So - S2 Y

ing two or more different paths (after loop re-
duction), each path is considered as a different

execution class. E. Blocking Components
For example, the Control Flow Graph shown In Figure |hwitively, Blocking Components are chains of service
2 produces the following execution classes: invocations such that all methods within the chain are
EC,, = {{< 0,1 >,< 55,1 >,<n® 1>}, blocked until the end of the computation.

We define the blocking property as a relation between
two services (or a process and a servieepnd s, that
indicating that the service considered, depending émconditioned by a set of Execution Classessof We
the execution class realized during a given invocatiosgy thats; is blocked waiting fors, under the set of
may or may not block itself on event;. If s;, had Execution ClassediC> C EC;, if 51 € ec,Vec €
a non-blocking behavior, this would imply that theZC3=.
invocation of services;, would be blocking or non- The definition of blocking property given above is
blocking depending on the control flow. This is théocal, that is it characterizes the relation between a ser-
maximum level of information that can be obtainedice or process, and the services it may invoke. We can
from our static analysis. Profiling could then be usesktend the definition by considering thatsif is invoked
to provide frequency weights for the execution classed some Execution ClassesC;: C ECs,, thens; is
From the Execution Classes, we can computeea blocked waiting forss when the control flows within the
cution frequencynetrics, which will be useful to gaugeexecution classeBC;> and EC32. So,blocking(sy, s2)
the ratios between bandwidths of different connections true under the conditio’CJ> A EC32.

{< 85,1 >, <n® 1 >}}



the intermediate format (MOIR). Figure 4 shows the
MOIR graph for the sample system. For the sake of

Trigger 1

clarity, in addition to the nodes (components) and edges
Conorator v ﬂ Dispatcher (connections) of the graph, the datatypes of the interfaces
Burst Buffer 1 involved in each connection have been annotated on the

edges of the graph.

, oy

C. Metrics Evaluation

Mean Computer 1

Mean Computer 2

For the purpose of this example, we use a simplified
notation. Since all interfaces are of thiecking puttype,
we only need to specify the datatype. Most channels
offer a single service, so the service will be identified
by the component name, except in the case of the burst
buffer, where the data type (bool or other) will be used

Fig. 3. Structural overview of the system employed to exémwpl to distinguish different services.
the application of the metrics In the end, the set of services implemented is:

S ={M1,BB2 : bool, BB2 : float,

This shows that for the blocking relation the transitive IM1,FM1,D1, BB1 : bool, BB : int}
property holds; we can then defiblcking chainsas the _ .
transitive closure of the blocking relation. The same we can do with processes, so that:

Finally, Blocking Componentare formally defined as T ={G1,T1,T2}

the chains of modules and channels that implement the hin th h n
services that appear in a blocking chain. Within the system we have a set of four events-

{617 €2, €3, 64}:

VI. EXAMPLE OF METRICS COMPUTATION e e1 . buffer_full forthe burst buffebbl
es : buf f er _enpti ed for the burst buffetbbl
es . buffer _full for the burst buffebb2
eq4 - buf fer_enpti ed for the burst buffetbb2

We will therefore indicate the notify and wait on event
e; with the symbolsn? andw’.

1) Execution ClassesThe service provided by the

The overall system implements the computation of theonitor m1 has a single, empty execution class:
mean of groups of 16 integers from a stream produced ECw1 — {0
by a generatogl and stored in éurst buffer bbi(a w1 = {0}
structural diagram of the system in presented in FigureFor the burst bufferbb2 we have the following
3). classes:

A burst bufferis a component that stores a given _ 3 4
number of data tokens, and then outputs them in a ECBB2 froar = {{< n",1 >, <w’,1>}.0
sing_le burst_when ij[ is p.rope_rly_ triggered; this mode_l is ECBR2t00 = {{< wh, 1>, < M1,1 >, < n? 1>},
particularly interesting since it implements and requires 3
services of different nature (control, data transmission) {<ML1>, <0’ 1>}}

The mean may be computed using two different algo- The two mean computation channels offer services
rithms, implemented bim1 andfml A dispatcheldlis that have the same execution classes:
in charge of the choice betweéml andfml Then, the
result is sent to a second burst buffes2, which feeds ECivn = ECpyn = {{< BB2: float,1 >}}
a monitorml Two trigger modulest{ andt2) control The dispatchedl has the following execution classes:

the burst buffers. ECpy = {{< IM1,1 >}, {< FM1,1>}}

B. System MOIR Graph For the burst bufferbbl, we have the following

The first step towards the computation of the syste%asses;

design metrics is the parsing of the SystemC model to ECpp1int = {{< nt 1> < w1 >}, 0}

In order to show how the metrics are applied, and What:
kind of information the designer can gather, we present.
a sample TLM system design.

A. System Definition



T1
bool int x 16
Gl —=| BB1 D1
Int
intx 16
int x 16
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Fig. 4. System MOIR Graph with indication of the interfacaatgpes

ECEB1bool = {{< 0?1 >,< D1,1 >, <n' 1>},

execution classes:

ECc1 ={{< BB1:int,1>}}

{< D1,1>,<n'1>}}

The three processes are characterized by the following

ECr = {{< BB1:bool,1 >}}
ECry = {{< BB2:bool,1 >}}

2) Blocking ComponentsBy indicating withec’, the
i-th execution class of servicee S, we have that the
true blocking function ors, both in the flow-insensitive
and flow-sensitive version is as shown in Table Ill.

TRUE BLOCKING FUNCTION VALUES

TABLE 11l

[ Service | True Blocking | FS True Blocking I
M1 False False
BB2:bool | True €CH B2:bool
BB2:float | True €CBB2: float
IM1 True €CB B2 float
FM1 True €CBB2: float
D1 True eclBB2:float
BB1:bool | True €CEB2: float V €CBB1bool
BB1int | True €CB B1int

Then, the blocking components are computed as fol-

lows:

BCa

0
(BB1}

{BB1,D1,IM1, BB2}

{BB1,D1,FM1, BB2}

2
€CBB1int

€CBRB1int”
€CBB2: float

1
eCIBBI:mt A
€CBB2: float

1
€CBB1:int/\
ecBBZ:float

T2
M1 Q bool
BB2 M1
/ float x 32
FM1 float
2
@ eCBBl:bool/\
€CBB2: float
{BB1} eCQBBQ:float/\
€CBB1:bool
BCr =
{BBLDLIMLBB2} eciBB2:float/\
€CBB1:bool
1
{BB1,D1, FM1,BB2} ecppy. f1om/\
eCBBl:bool
1] ec?
BCTQ { BB2:bool
{BB2} eclBB2:bool

3) Memory Size:Table IV shows the memory size
metric computed for the components present in the
system.

TABLE IV
MEMORY SizE METRIC COMPUTATION

[| Component| Size I
M1 none
BB2 1056 bytes
IM1 none
FM1 none
D1 512 bytes
BB1 544 bytes
Gl none
T1 none
T2 none

VII.

The metrics so far defined and computed can be
exploited to infer other information useful to perform dif-
ferent implementation choices, such as the measurement
of the communication components (e.g. bus and fifo
width), bandwidth measurement and allocation, assign-
ment of communication functions to shared resources

POTENTIAL APPLICATIONS
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(such as bus and shared memories). In this section, teday for the parameters of servigeand.S is the set of
application of such metrics has been formalized arad services considered.
exemplified.

A. Communication Channels Width B. Bandwidth Constraints Propagation

A direct application of the communication width is An application of the combined information obtained

the estimation of the width of the buses or fifos needc?é( _block_lng (_:halns, e>_<ecu_t|on frequer_lcy and com_mum—
to implement a given communication service. cation width is the estimation ddandwidth Constraints

The communication width metric is itself parametrigmpagat'on_ i .
with respect to the operator used to combine the fineSUPPOSE, in the simplest case, that a module invokes
grain (method-level) data. Different choices of the a services; on a given cha_nnel. If the communlca_ltlon
operator can be used for different purposes. Let us revidfith of s1 is wi, and s, invokes another blocking
the most significant options, considering the effect on ti$§"ViCes2, of communication widthw,, it can be inferred

communication width metric computed on two moduld§at: for every amounts; of data that is sent through

connected by a channel the communication link that implements, at least an
If @ is maz, then, given a fixed serial bandwidtiemountw, of data will have to be sent through the link
BW,oriat @and a number of wirei,.s, the designer on which is implementeds, (we will refer to this link

imposes an upper bound to the transmission delay #§fth /2)- If, for some reason, the bandwidth of is

the parameters of the single service invocation. That [&nited, this will be reflected by the maximum data rate
the following inequality is imposed: transmission ofs;. In particular, if the bandwidth ofy

is limited to bws, the data rate o§; will not be able to

cw, .
max(ts) < mazx go over:
seS BWserial X Nuires w1
. . . . . . bw1 § — X bw2
whereC'W,,,.. is the communication width metric, using w9

the maximum operator &g, ¢; is the communication ,

delay for the parameters of serviegand S is the set  \jth the combined use of the aforementioned metrics,

of all services considered. it is possible to generalize this reasoning to the complex
If, on the other hand, the average operator is usggses of:

instead of®, then the designer is imposing an average

. . SN « services that can be either blocking or non-
bandwidth. Ifz, is the average communication delay for g

. blocking;
a service in3, then « bandwidth ratios between services that are imple-
T = CWavg mented by channels not directly connected (i.e., that
BWserial X Muires are “distant” in the system structure).

By weighting the communication widths of each service Since bandwidth is, in the general case, data depen-
by weightsp(s),s € S, it is also possible to take intodent, information that can be obtained is, most likely,

account the distribution of service invocations — eithgfpper and lower bounds to the bandwidth ratio of two
computed by means of simulation or derived from thgifferent connections.

Execution Classes. In this case, Let us consider the application of this principle to the
T CWang Y scsP(s) x CW(s) modeling example proposed. If we consider the blocking
T BWaerial X Nwires  BWaerial X Twires componentBCr;, we observe that all the execution

Last, if the® operator is replaced with the arithmetic(:l"’lss_e_S fo_r whichZ 52 is myoked are present n the
sum, the designer is imposing an upper bound to tﬁgndltlon list of all the blocking chains that contain the
transmission delay, assuming that threads within tﬁéfewt'o_n classes for \:(Vh'crr: el is myr?ig?q I_:romktk(;ls
initiator module can fire different methods offered bi'formation, we can infer that every ti IS Invoked,

the channel interface. In this case, the upper bound 532_ is: invpked. ThL.JS’ itall the_cgnnections (B B2
defined by the following inequality: are limited in bandwidth, the limit is propagated ful.

Since BB2 can be invoked by eithefM/1 andIF'1, the

Zts < CWy bandwidth constraint o1, whenIM1 and IF1 are
T BWaerial X Nwires limited to BW;y;1 and BW; gy will be:
where CW, is the communication width metric, using BWeryi  BWiavn S BWpgp

the sum operator as, while ¢, is the communication Weunt Wi — Wagl
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To experimentally assess this relation, we simulated thesource sharing for the reduction of resource require-
model imposing fixed communication latencies on bothents, so a tradeoff must be considered. The bandwidth
FM1 and IM1, and measured the average bandwidltounds discussed in Section VII-A can be applied to
with which D1 was invoked byBB1. SinceW;,;; = estimate the tradeoff point.

Wegayn = 1 and Wy = 16 (width is measured in  In the example proposed, we can observe that, for
words, and both integers and floating point are encodedery execution clasg)D1 and BB1 always belong to

with a single word): the same blocking component. This means that imple-
BWgp menting connections td D1 and BB2 with a shared
1 . o
BWru + BMin 2 — ¢ connection should not cause a significant slowdown. In

The results of the simulation are shown in Table \Prder to verify this hypothesis, we simulated the effect

where the relationship between bandwidths of the co?lf-Sh""re‘j |mplementat|on of conr_lectlons. We considered
|J_ the possible couples, and simulated resource shar-

sidered model connections is presented. Columns B ih Th Il slowd ted
respond to simulations in which a bandwidth constraifftd @mong them. The overall siowdown was compute
the ratio between non shared implementation aver-

was imposed to a particular connection. It is possib?eS

to observe that the bandwidth propagation relation hol ge throughput and the current ;hared |mplement§tlon
for all configurations, throughput. Results are shown in Table VI. Sharing

configurations with slowdown of 1.0 (no slowdown) are

C. Communication Resource Sharing exactly those foreseen by means of the metrics.

Another possibility offered by blocking componentsis ~ VIII. | NDUSTRIAL APPLICATION EXAMPLE
to characterize sets of communication services that carrhe analysis previously described has been imple-
be implemented with a shared resource, for examplerented in an automatic tool. The tool has parsing and
bus or a shared memory, with a minimum impact on thieternal model representation capabilities, and provides
bandwidth. a general framework for the analysis of high-level C-

Let us consider two services; ands,, and assume based models. In order to prove the effectiveness of the
that there is a blocking componeit such thats; € be  analysis proposed in a realistic context, we applied the
and s € bc. This means that all the data transfermformation extracted to the design of a module that
caused by the execution ef ands, will happen sequen- is part of a telecommunication application developed at
tially, without any overlap (not considering pipeliningNokia Siemens Network [10]. The size of the model nec-
of course). Ifs; and s, data transfers are assigned tessarily required automatic computation of the metrics,
the same communication resource, they will likely causmalysis “by hand” being too complex.
negligible access conflicts. Again, such situations can beThe high-level model considered represents the sub-
directly detected on simple models, but their locatiosystem of a base station that implements the ATM over
becomes rapidly unfeasible as the number of chann#sservice. It is composed of 16 modules, connected by

and services grows. 22 connections (see Figure 5). The whole code is more
than 6000 lines long. All communications are modeled
D. Pipelining as blocking Transaction Level Model service invocations.

In addition to the detection of potential shared reT_-he implementation problem considered is the optimiza-

source, pipelining opportunities can also be investigatd@" ©f the maximum achievable throughput, using the
by means of the blocking components. If the blockin@'n'mum possible set of communlcatlon_ resources. In
component chain is unidirectional — that is, data flo@"der to do so, we performedn-overlappingnalysis,

through components of the chain in a single directioﬁ? maximize resource sharing avoiding access conflicts.

then an opportunity for pipelining arises. This can be
detected by computing the directionality metric on the
services of the blocking chain. BC'is a blocking chain,
ands;, s; are services withilBC, then we can say that The original problem space can be put into correspon-
the portion of BC' betweens; and s; is a pipelining dence with the set of all the possible partitions of all
candidate if the 22 connections contained in the model, making an
exhaustive exploration clearly unfeasible.

The analysis tool implementson-overlappinganaly-
Of course, the opportunity of pipelining for performancsis, automatically computing a representation of the non-
improvements conflicts with the potential benefits ajverlapping relation for every couple of connections.

Vi, i <k < j,D(Sk,S]H_l) = D(Si,é’i_;.l)
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TABLE V
RELATION BETWEEN BANDWIDTHS OBTAINED BY SIMULATION

none | bbldl | iml1.bb2 | bb2m1 | fml1_bb2
bbldl | 7.58 2.05 6.64 2.54 1.33

iml.bb2 | .20 .06 .18 .07 .04

bb2mil | .45 12 40 .15 .08

fml.bb2 | .28 .08 .25 .10 .05
TABLE VI

SLOWDOWN DUE TO COMMUNICATION RESOURCE SHARING

bbldl imlbb2 bb2ml fmlbb2
glbbl 1.02 1.02 1.50 1.02
bb1ld1l 1.00 1.52 1.00
im1_bb2 1.19 1.00
bb2m1 1.32
ciTCUJt 0 TII..M Analysis )
B sc_mainl N sc_mainl.’lP _gen_RX_0_inst/get#atm_cell(*)(*IP_gen_RX,*tlm_tag,void)
i okt it
_ Direct implications
IP_gen_RX_0_inst Indirect implications
(channel) Not Overlapping Services

ﬁ""{u“’*“ sc_mainl/IP_gen_RX_1_inst/getfatm_cell(*)(*IP_gen_RX,*tlm_tagvoid)

(service)
IP_gen RX_1_inst link to circuit
(channel) Direct implications
Type:IP_gen RX Indirect implications
B ” :
Not Overlapping Services
TP_gen_RX 2 inst (% i
e sc_mainl/IP_gen RX_2 inst/get#atm_cell(*)(*IP_gen RX,*tlm_tag void)

Type:IP_gen RX (Vscwice)r .

| link to circuit

IP RX _3_inst Direct implications
_gen_. _|

(channel) Indirect implications

Type:IP_gen_RX Not Overlapping Services
sc_mainl/IP_gen RX 3 inst/get#atm_cell(*)(*IP_gen RX, *tlm_tag,void)
gen (service)
g,md)_RxJ_M link to cilcuil P
Type:IP_gen_RX Direct implications
Indirect implications
IP_gen_RX_5_inst Not Overlapping Services
(channel) sc_mainl/TP_gen RX_4_inst/get#atm_cell(*)(*IP_gen_RX,*tlm_tag,void)
Type:IP_gen RX (service)
— link to circuit
IP_gen_RX_6_inst s Direct implications %
(channel) v Indirect implications v
Check TLM overlapping services:
Service X: | --- Select service | link to TLM analysis

Service Y: [ -~ Select service | link to TLM analysis
Ate they overlapped? | ‘

Fig. 6. Hypertext-based navigable front-end to the stmattmnetrics as extracted by the computation tool

On a Dual Core 2Ghz Pentium, the analysis took 34dsources.

seconds to be performed. Moreover, the directionality metrics suggests that there
The information produced by the analysis was poste¢ candidates for pipeline implementation (see Sec-

processed and converted in a navigable html format (i VII-D). In the present case, the non-overlapping

Figure 6). class comprehending communication between the com-
From this information, classes of maximum size JfONeNSOAM.DEMUX, DEMUX; the set ofA2IP can

reciprocally non-overlapping connections are derived B§ implemented as a set of interstage pipeline buffers,

maximal cliques of the non-overlapping relation graphSince all its communications actions happen in the same

The static analysis of the model highlighted a partitiodn'recnon'

of the communications into five non-conflicting classes.
Each class can then be mapped onto a single communi-
cation resource, without causing any access conflict, and
thus avoiding any bandwidth degradation.

In Figure 7 the communication implementation struc- We presented a framework for the automatic analysis
ture is represented as a set of interconnected shaoédsystem models described at transaction level. This

IX. CONCLUDING REMARKS



‘ MONITOR_TX ‘

RAM_RX

‘ OAM_DEMUX

4

}—‘ TRAFFIC SHAPER ‘ ‘ RAM_TX ‘

BRANCH_TX

[ [ [ [ [ [ [ [ [ \
A2IP | A2IP | A2IP | A2IP |A2IP (A2IP A2IP |A2IP
[ [ [ [ [ [ [ [ [

the

DEMUX ‘

A2IP A2IP

SN
[2]

‘ MONITOR_RX ‘
[

(3]
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Fig. 7. Implementation of the system communication with five
shared resources
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level of abstraction is effective in modeling early exe-
cutable descriptions of systems under design, as well as
first refinement phases. Thus, it is particularly suitablé]
as front-end language for the design of hw/sw systems,
and is producing increasing interest, in the EDA field,
towards methodologies and tools that allow to beBl
exploit the information contained in such models.

We take under consideration the SystemC transactiap
level of abstraction modeling, as defined by the OSCI
steering consortium. Structural and behavioral features o
models were abstracted and mathematically formalized.
Relying on the formalization, a set of metrics for the estj13]
mation of the communication design choices effects was
defined, and their computation exemplified. Different
design application scenarios were drawn, and the tech-

14

niques proposed were applied to the example proposed.
Static analysis techniques can be particularly valuabile fo
large designs. In these designs, structural properties and
features cannot be detected manually or by exhaustive
simulation as they would be in simpler design cases. On

other hand, the proposed methodology allows these

features to be highlighted automatically, without need for
time-consuming simulation.
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