
1

Static Analysis of Transaction Level
Communication Models

Giovanni Agosta, Francesco Bruschi, Donatella Sciuto

Abstract— We propose a methodology for the early
estimation of communication implementation choices ef-
fects, starting from an abstract transaction level system
model (TLM). The reference version of TLM considered
is the OSCI library. The methodology is based on the
computation of metrics that abstract useful information
from the initial system model. The metrics are precisely
defined upon a general, formal model of transaction
level system descriptions. A set of design problems of
relevant interest, such as shared communication resources
assignment, pipelining partitioning, bandwidth and latency
constraints estimation, is considered to show some poten-
tial applications of the metrics proposed.

I. INTRODUCTION

The aim of this work is the definition of an analysis
methodology of the communication properties in a high-
level system model. This information provides a support
to the designer in gaining a better insight on the system
characteristics. The outcome of the analysis can be
exploited by the designer to perform a better partitioning
of the system and to obtain a more effective synthesis
of the communication parts.

Simulation-based validation through executable mod-
els of a system is commonly employed in the embedded
systems design community in the first phases of the
design process to evaluate the different architectural
alternatives. Typical advantages claimed in favor of the
adoption of such models are that they can help in better
understanding the specification, allowing to highlight
unnoticed ambiguities, and that they can act as a formal
reference for the system implementation.

The ability to model communication without specify-
ing an implementation choice allows easier and faster
writing of the system models that can be used asfunc-
tional specification of the system.

Still, part of the current EDA research effort origi-
nates from the assumption that such models implicitly
contain information that would allow the automatic im-
plementation of the communication between the system
components and the early estimation of its effects on
performance.

The first assumption is the conceptual basis for the
abstractcommunicationsynthesis approaches. The sec-
ond assumption implies that it is possible, starting from
a purely functional description, to compare different
implementation choices without having to directly refine
a model or to generate a prototype. The information
extracted from the analysis of the abstract system model
could be exploited to guide architectural choices to
determine the number and type of resources to employ.
Furthermore, such information can drive the automatic
synthesis of parts of the system, to drive automatic
algorithms in achieving optimal or satisfying results
(such as, for instance, various types of resource sharing).

A. Design problems addressed

The implementation of a high-level communication
model requiresmappingonto physical components, that
includesresource sharing, performance(bandwidth and
latency) estimation, dimensioning(of buses width, for
instance).

In this context,mappingmeans finding a correspon-
dence between the communication channels of the model
and the physical channels of the target platform. An
important problem is to decide what model channels
can be mapped onto the same architectural elements
(resource sharing). To this aim it would be useful to
know what model communication channels are most
likely to be activated at the same time, risking to cause
access conflicts. This problem, if addressed with brute
force simulation approaches, is computationally very
complex (the number of configurations is equal to all
the possible partitions of the communication channels
with a given number of classes, a number that diverges
rapidly).

Performance estimationanddimensioningare strictly
interrelated. In particular, it would be interesting to know
in advance the effect of given dimensioning choices on
the performance of other parts of the system. Exemplify-
ing, a typical problem could be: let the communication
channelA be implemented with a component that can
guarantee at most the bandwidthb; how will this affect
performance of the communication on channelC? Will



2

this choice impose an upper constraint on the bandwidth
of C? Even for this problem, a brute force simulation
approach would be impractical.

The intrinsic complexity of a simulation approach to
these problems suggests the exploration of static analysis
techniques, which would be valuable to support the
designers in making effective choices by better under-
standing the specification features.

In our work we determine the information that can be
obtained statically and that can be useful for the solution
of the problems considered.

This information can be either structural, identifying
the communication dependencies, or relate to commu-
nication performance.Communication Dependencies In-
formation allows detection of such dependencies, that
may be hidden, but allows also the estimation of the
communication load and latency.Communication Per-
formance Informationcan be either local or global.
Local performance can be characterized by latency and
throughput of specific communication channels. Global
performance allows the identification of possible bottle-
necks but also the detection of the available parallelism.

Dependencies Informationcan be valuable indepen-
dently from Performance Information, or be exploited
as a basis for evaluating the latter.

B. Proposed methodology

The analysis methodology proposed in this paper aims
at the extraction of the above information by means
of a static analysis of the early, transaction level based
executable model.

This is obtained by defining a set ofmetricsthat can
be statically computed. The role of the analysis in an im-
plementation flow (here emphasis is on communication
implementation) is shown in Figure 1.

It is worth noting that the metrics proposed are not in
a one to one correspondence with the information cate-
gories mentioned. The link between their estimation and
the achievement of the desired information is obtained
with a further processing step. Nevertheless, metrics are
formulated with these goals in mind, so it is possible
to apply each of them in the estimation of a particular
information category among those specified.

Among the system level design formalisms available,
we choose to analyze SystemC Transaction Level Mod-
els as defined by the Open SystemC Initiative con-
sortium (OSCI). The OSCI TLM library was designed
to obviate to the lack of standardization in SystemC
Interface Method Call (IMC) formalism used to describe
communication at a high level of abstraction.

TLM Model

Static Analysis

HW/SW Partitioning

Communication implementation

RESOURCE 

SHARING
PIPELINING

Communication Architecture Definition 

(Communication Resources)

Number

TypeSize

Fig. 1. Overview of the implementation of system communication
by exploiting static analysis

C. Paper organization

The rest of this paper is structured as follows. Sec-
tion II provides an overview of the related works. In
Section III the input SystemC subset to which the
analysis can be applied is defined. In Section IV we
introduce a mathematical representation of the system,
used in section V to define the metrics. Some compu-
tation examples are provided in section VI. Section VII
shows the application of the defined metrics to some
relevant design problems such as shared communication
resources assignment, pipelining partitioning, bandwidth
and latency constraints estimation. Section VIII provides
a larger application scenario based on an industrial case.
Finally, Section IX draws some conclusions.

II. RELATED WORKS

Metrics computation has been widely used in the fields
of hardware/software codesign and power estimation.

Static metrics are used to estimate affinity between
functional elements, to allow some form of clusteriza-
tion, aimed at the partitioning of the system. A wide set
of behavioral metrics have been developed by Vahid [11]
for system-level partitioning.



3

Static analysis of SystemC models is also used in [9],
for the timing analysis of descriptions based on parallel
communicating processes. The analysis, in this case, is
aimed at determining some temporal properties of the
system such as the worst-case response time.

Transaction level modeling was first introduced in
hardware specification languages in SpecC [13], and later
developed under the name of behavioral wrappers in [12]
and as Functional Interface by the VSIA [4].

The problem of the implementation of transaction
level models has been addressed by Grötker et al. in [3].
Here the authors show how to use SystemC 2.0 to
refine high level models into descriptions closer to the
implementation; the analysis focuses on the modeling
capabilities of the language, that allow the refinement
of the description towards its implementation, rather
than proposing a methodology for the synthesis of such
models. Moreover, the problem of describing abstract
models at the transaction level is extensively considered.

In [5] the authors present a set of metrics that extract,
from C specifications, information that characterizes
system behavior with respect to three different aspects:
potential parallelism available, amount of memory access
operations, amount of control component. The metrics
are defined and computed relying on a hierarchical
graph representation of the initial C specification. Met-
rics values provide information that can be exploited
for architectural choices such as component pipelining,
memory access optimization effectiveness, amount of
architecture parallelism. The approach presented in [5]
is somehow similar to that of the present work, in that
it aims at providing designers with statically computable
information, useful for certain architectural choices. The
results of [5] are complementary to what here presented,
in the sense that the concerns addressed are fairly differ-
ent: we focus on the communication architecture rather
than on the choice and design of the processing elements.

Another approach supporting design choices by means
of statically computed information can be found in [8].
In this work, the information extracted from C based
specifications is exploited to estimate whether given code
is most suitable for general purpose processors, digital
signal processors, or on application specific integrated
circuits. Entry point of the computation is a C specifi-
cation, that is translated into a control data flow graph
based representation. A set ofaffinity metricsbetween
the code and the three implementation technologies are
then computed on this representation. Metrics are based
on the taxonomy of instructions of the intermediate
representation, with respect to their supposed affinity
with different architectures. Affinities are then computed
as the fraction of instructions of the class affine to

TABLE I

TLM I NTERFACES SUMMARY

Interface Data Synch Methods
flow type

tlm blocking get if ← blocking get()
tlm blocking peekif ← blocking peek()
tlm blocking put if → blocking put()
tlm nonblockingget if ← non-blocking get(), nbcan get()
tlm nonblockingpeekif ← non-blocking peek(), nbcan peek()
tlm nonblockingput if → non-blocking put(), nbcan put()
tlm transportif ↔ blocking transport()

one implementation technology. The work is extended
in [7], where three metrics are added:load indexes
communication indexes, andphysical cost index. These
metrics are meant to be computed to support system
partitioning, and give information on aspects such as
the balance between computation and communication,
processor loads, and implementation cost.

In [2], we defined a set of metrics potentially useful
for the estimation of the effectiveness of several commu-
nication implementation choices. In this work, the set of
metrics presented in [2] has been significantly extended
with the introduction ofexecution dependentmetrics,
that allow to take into account statistical analysis on
the estimated information. More details are provided in
section V. Moreover, in this work, specific applications
of the proposed metrics are formally defined and tested
on a design example. Another significant improvement
over [2] is the definition of a precise mathematical
abstraction of a SystemC transaction level model.

III. SYSTEMC TRANSACTION LEVEL MODELING

DEFINITION

This section summarizes the definition of the core
Transaction Level Modeling library, proposed by OSCI
as a standard for this level of abstraction. The library
is freely available for download from the OSCI site [1].
As explained and motivated in the previous section, this
TLM formalization will be considered as definition of
the language input for the metrics computation.

The TLM formalization proposed by OSCI (simply
“TLM” in the rest of this paper) is, in its essence,
composed of a set of predefined, parametric base in-
terfaces. Whereas a SystemC interface is composed of
an arbitrary set of method signatures, TLM provides a
fixed base set of defined interfaces, each with a given
number of methods, whose semantics is determined.
TLM interfaces are characterized by three main choices:
whether their methods have a blocking or non-blocking
behavior, whether the data transmission is bidirectional
or unidirectional, and what kind of data is passed when
the interface methods are invoked.



4

Given these basic characterization criteria, TLM de-
fines a set of seven interfaces that represent homoge-
neous communication transactions, as shown in Table I.
A SystemC model is TLM compliant if all its channels
implement only interfaces among those listed in Table I.

All the interfaces are parametric with respect to one
(unidirectional) or two (bidirectional) data types.

In the rest of this section, we will deal with the two
main features of those interfaces: data flow direction and
synchronization, since these features of TLM models
will be exploited in the analysis presented in the next
sections. A more in-depth coverage of SystemC TLM
modeling can be found in [6].

A. Synchronization

SystemC allows the description of modules behav-
ior with two types of processes: SCMETHOD and
SC THREAD. The main difference between the two
is that an SCMETHOD cannot suspend its execution
waiting the occurrence of an external event, while
an SCTHREAD can do so. Suspension, in SystemC,
is achieved through invocation of thewait method.
SC METHODs cannot invoke a wait() statement, nor
they can invoke any function or service that invokes it.
Adopting a widespread terminology, OSCI callsnon–
blockingany function thatis guaranteednot to call any
wait, directly or indirectly, andblocking all the others.
This concept is formalized in TLM: all the interface
methods are characterized asnon-blockingor blocking,
depending whether they guarantee or not that calling
them will not lead to a wait() suspension.

Non-blocking interfaces provide methods to check
whether the non-blocking request is likely to succeed
(e.g., nb can get) and methods that return ansc event
that is notified when the non-blocking action, if called,
would likely succeed. These primitives allow the de-
signer to adopt synchronization models for the non-
blocking control scheme that are closely modeled on
the interrupt andprogram controlperipheral interaction
modes.

B. Data flow direction

In addition to managing different types of synchro-
nization methods, TLM provides both unidirectional (put
or get) and bidirectional (transport) transactions. The
rationale behind this choice is that any arbitrarily com-
plex communication protocol can be broken down into a
sequence of unidirectional (or bidirectional) transactions.
On the other hand, the possibility of defining both
unidirectional and bidirectional communications allows
to easily model different types of interactions, such as

a read across a bus or a network packet transmission,
without breaking them down in smaller components or
requiring more resources than what is needed.

C. TLM 2.0 Extensions

The need for features not present in the initial TLM
specification has led to the development of a second
TLM standard proposal (TLM 2.0). TLM 2.0 presents
several novel or variant abstractions, mainly aimed at
improving performance, allowing finer timing specifica-
tion and augmenting the expressive capabilities of the
formalism. While TLM 2.0 is still in its second draft
form, it is worthwhile to consider how the proposed
extensions will affect the methodology proposed in this
paper.

First, a new transport interface has been defined,
which, instead of performing bidirectional data flow,
concentrates information into atransaction argument.
This allows faster simulation, but preserves the transport
semantics.

For timing expressiveness, a new level of accuracy,
called loosely-timed, is introduced. The possibility of
expressing timing information is present in TLM 1.0 as
well, though not in a standardised form. Our work is
focused on the analysis of functional specifications, with-
out timing information. Thus, the new level of timing
accuracy does not affect the system models considered
in the rest of the paper.

Beyond some syntactic adjustments, the proposed
methodology applies indifferently to TLM 1.0 and TLM
2.0 models at the untimed functional level of abstraction.

IV. SYSTEM REPRESENTATION

In this section, a mathematical abstraction of the
TLM SystemC models is presented. This representation
serves as basis for the definition and computation of
the communication estimation metrics in Section V. In
the remainder, the structure of this information will be
referred to asMOIR, that isMetric Oriented Intermediate
Representation.

A MOIR of a given model is basically anannotated
graph of connected components:

D =< M,E >

whereM is the set of components andE is the set of
edges.

The components are defined according to the OSCI
TLM interpretation of SystemC [6].



5

A. Components

A module classm is defined as a tuplem =<

idm, Im, Pm, Tm > where idm is a unique identifier;
MC is the set of module classes;Im ⊆ ITLM is the
set of interfacesimplemented by the module classm;
Pm is the set ofports of m; and Tm is the set of
processesbelonging to m. Processes, in a SystemC
module, describe the reactive behavior of a component.

A port p is defined asp =< idp, ip > where idp is
a unique identifier andip ∈ ITLM . It can be interpreted
as an interfacerequiredby a given modulem.

A module classm such thatIm 6= ∅ is defined a
channel class. A channel, in SystemC, is in fact any
module that offers some TLM service. The set of channel
classesCC is therefore defined asCC = {m|Ic 6= ∅}.

Componentsc are instances of module classes, defined
as c =< idc,mc > whereidc is a unique identifier and
mc is a module class. The sets of module components
M and of channel componentsC ⊆ M are also defined.
M is the set of all the instances of module classes in the
system, andC = {c|Imc

6= ∅}.
In the remainder of the paper, we will refer to ports

Pc, interfacesIc and processesTc of a componentc =<

idc,mc >, meaning the portsPmc
, the interfacesImc

and the processesTmc
of the module classmc.

B. Processes and Events

For our purposes, the most interesting distinction of
processes in Transaction-Level Models is betweenmeth-
odsandthreads. The notable difference between the two
is that the former are guaranteed to benon-blocking(they
cannot suspend themselves and cannot invokeblocking
services), while the latter can beblocking. A formal
specification of the synchronization properties will be
given in Section V.

Processes belonging to different modules can com-
municate viaservice invocations, which provide a point-
to-point form of communication between a process (or
a service) and a service. To allow intermodule process
to process synchronization,eventsare employed. Events
implement the rendez–vous synchronization semantics.

Each event is represented by a unique identifier (or
tag). An event can benotified, according to SystemC
execution semantics, and it is possible for a thread to
wait for it to be notified.

In MOIR, processes are characterized by theirCom-
munication Control Flow Graph, that is a graph that
is obtained from the classicalControl Flow Graphby
collapsing all nodes that do not represent a service
invocation, a wait suspension or an event triggering.

The Control Flow Graph of a process is a directed
graph in which each node represents abasic block, that
is a sequence of statements that have a single entry and a
single exit point. The edges of the Control Flow Graph
represent the flow of program control from one basic
block to the next. According to the purposes of our
analysis, only communication activities are considered
relevant. Consequently, all nodes that do not contain a
service invocation, a wait invocation or an event notifica-
tion are collapsed, and the result is the Communication
Control Flow Graph.

A process can then be represented as a tuplet =<

idt, Cfgt >, whereidt is a unique identifier andCfgt

is the Communication Control Flow Graph.
From the Communication Control Flow Graph, we

can extract different sets of elements characterizing a
process:

• the setes
t of events the process is sensitive to (that

are in itssensitivity list);
• the setew

t of events the process can suspend upon
until notification;

• the set of eventsef
t it can notify;

• the set of servicessc
t it can call through the com-

ponent ports.

C. Services and Interfaces

In SystemC,channelsimplementservicesthat can be
invoked by other modules to achieve communication.
An interfacedefines a set of methods that are provided,
together, by a channel.

In MOIR, an interfacecan then be represented as a
triplet i =< b, d, T >, whereb represents the blocking or
non-blocking characteristic of the services of the inter-
face;d ∈ {r, w, rw} represents the uni-directional or bi-
directional characteristics of the interfaces, together with
the data flow direction (outcoming or incoming); and
T ∈ DataTypes represents the data template parameters
of the interfaces.

The set of all interfacesITLM is composed of the
seven Transaction-Level interfaces defined in [6], para-
metric with respect to the data types.

The building blocks of the interfaces are theservices,
that is the methods that a component provides when
it implements a given interface. Aservice signatureis
represented by a pairss =< ids, is >, whereids is a
unique identifier andis ∈ ITLM is an interface.

Servicesare associated with component classes, and
can be defined as tupless =< c, ss, Cfgs >, wherec is
a component class,ss a service signature andCfgs is
the Communication Control Flow Graph associated with
the service.



6

From the Communication Control Flow Graph we can
extract different sets of elements of interest for each
service:

• ew
s the service can wait upon for notification;

• a set of of eventsef
s it can notify;

• a set of other servicessc
s it can call.

D. Synchronization Properties

A services is non-blocking when it never waits for
event notification (ew

s = ∅), and it never calls a blocking
service. The TLM non-blocking interfaces guarantee that
both properties are respected by every non-blocking
services.

As far as processes are concerned,methodsare guar-
anteed to be non-blocking, since they comply to the same
constraints as the non-blocking services.

For a methodt, es
t 6= ∅ because the method is sensitive

to a predetermined set of events, defined outside the
Control Flow Graph.

E. Connections

Connectionsrepresent the binding of module compo-
nents (module classes instances) to channel components
(channel classes instances). Formally, aconnectione is
represented by a tuplee =< m, c, p, i > wherem ∈ M

is a module,c ∈ C is a channel,p ∈ Pm is a port ofm
andi ∈ Ic is an interface implemented by the channelc.

The setE of all the connections in the system is also
the set of edges of the system representation graph.

A constraint is imposed on the connections, so that
every port connects to one and only one channel. No
such constraint is imposed on channel interfaces, so any
number of ports requiring the same interfacei can be
bound to the same channel that implementsi.

F. Extension to Hierarchical Models

So far, a MOIR describes a “flat” system. Actually, it
is desirable to be able to describe hierarchical models,
where a module can in turn be composed of several
sub-components connected via services and synchroniza-
tions.

The MOIR can be easily extended to describe such
hierarchical models: consider a systemS defined in
MOIR, where a set of services and a set of ports are
implemented (respectively, required) by a special black
box component, thesystem environment. If we consider
S as a module class, the system environment is the
generic system in whichS can be instantiated. Therefore,
S can be seen as a module classmS whereImS

is the set
of interfaces offered to the system environment,PmS

is

the set of ports that will connect to interfaces provided by
the system environment, andTmS

is the set of processes
in the system. Then,mS can be instantiated in a system
as any other component. In a hierarchical model, we
will therefore callMS the set of components instantiated
within the top-level componentS.

In the rest of this paper, sample models that have a
single level of hierarchy will be considered. This is not
meant to represent a limitation of the metrics or of the
representation, but rather a simplification that allows an
easier presentation of the discussed issues and solutions.

V. METRICS DEFINITION

So far, our model provides topological information
on the presence of communication between computation
nodes. We want to enrich this information by specifying
both qualities of the connections, such as the size of the
data tokens passed through them and the direction of the
information flow, and qualities of the nodes, such as their
memory occupation.

We also want to add information about the depen-
dences induced by synchronization statements.

A. Communication Width

These metrics provide information on the width of the
tokens involved in the data transactions.

Let us first define the widthW of a data typet ∈
DataTypes as W (t) = sizeof(t), and the width of a
multisetD of types asW (D) =

∑

t∈D W (t).
For a services of an interfacei =< b, d, T >,

with signature identifierds we can define the widthW
as W (s) = W (i) = W (T ). Services with signature
identifier cs or es have a conventionalW (s) = 0.

Let ⊕ be a polymorphic operator such that(N,⊕) is
a commutative monoid. Then, for a channelc,

W (c) =
⊕

i|∃e∈E,e=<m,c,p,i>,∀m,p

W (i)

and for a pair of module and channel(m, c), Communi-
cation Width can be defined as

W (m, c) =
⊕

i|∃e∈E,e=<m,c,p,i>,∀p

W (i)

Let us now define the Communication WidtĥW be-
tween two modules connected through a set of channels.
First we define the width of the communication between
two modules through a single channel:

Ŵ (m1,m2, c) = W (m1, c) ⊕ W (m2, c)



7

Now we can define the communication width between
nodes connected through an arbitrary number of chan-
nels:

C(m1,m2) = {c|∃e1 =< m1, c, p1, i1 >, e1 ∈ E∧

∃e2 = (m2, c, p2, i2), e2 ∈ E}

Ŵ (m1,m2) =
⊕

∀c∈C(m1,m2)

Ŵ (m1,m2, c)

These definitions identify a family of metrics, param-
eterized by the operator⊕. Some significant operators
would be, for example, the addition and the maximum.
The former would define a metric that computes the bit
size of all tokens that can be exchanged between two
modules, while the latter would compute the largest data
token exchanged. Both metrics would be useful, though
for different purposes.

These metrics can be used to estimate the size of
the communication medium needed to implement the
connection. For instance, if the medium were a parallel
bus, these metrics could be used to estimate the number
of lines required.

B. Directionality

The directionality metricD accounts for the nature of
communication between two modules, and attempts to
detect whether the connection is read- or write-only, or
the communication includes control information only.

For service signatures,D(m) = d ∈ {r, w, rw, c},
where the possible values ofD(m) represent a read-only,
write-only, read/write or control-only communication.
The control-only communication is exemplified by the
control operations of the non-blocking interfaces. The
read only, write-only and read/write communication are,
respectively, theput, get and transport services. This
information is immediately available from the MOIR
representation, and is the starting point from which
the metric can be computed on pairs of modules and
channels.

To defineD for interfaces and modules, we need a
binary operator⊕ over the domainA = {r, w, rw, c}.
We also introduce a unary operator− that will be
interpreted as a direction reversal. The semantics of the
two operators are described in Table II.

We can now define

D(i) =
⊕

m∈i

D(m)

for an interfacei ∈ ITLM , and we can say that the
directionality of a portp that requires an interfacei is

TABLE II

OPERATORS OVER THEA DOMAIN

⊕ r w rw c
r r rw rw r
w rw w rw w
rw rw rw rw rw
c r w rw c

−

r w
w r
rw rw
c c

given asD(p) = −D(i). So, for a single component
m ∈ M ,

D(m) =
⊕

p∈Pm

D(p) +
⊕

i∈Im

D(i)

For an ordered pair of nodes(ni, nj), we define

D(ni, nj) =
⊕

e=(ni,nj,pe,ie)∈E

D(ie)

This metric can highlight unidirectional communica-
tions between modules, therefore suggesting implemen-
tation choices such as pipelines, FIFOs for hardware-
hardware solutions; for software-software systems, this
could affect the implementation of interprocess com-
munication, for instance revealing the need for locking
policies.

C. Memory Size

Memory Size metrics estimate the size of the state
space of the elements of the system.

Let V arm be the set of all attributes of modulem
that are not modules themselves. We can define the
Memory Sizesize(v), v ∈ V arm as the actual memory
occupation for that attribute, as given by thesizeof
C++ expression.

Thensize(m) can be defined as:

size(m) =
∑

vj inV arm

size(vj) +

+
∑

mi∈Mm

size(mi)

In the case of a non-structured module,Mm = ∅, so
the Memory Size is just the memory occupation of that
module.

These metrics can discriminate different implementa-
tion options, depending on the size of the state space. It
is possible to choose between combinatorial (as a bus)
and sequential (as a shared memory) communication
solutions.



8

D. Execution Classes

In order to collect information on the number of
service invocations and synchronizations performed by
a given service or process, we define theExecution
Classes. This is a kind of intermediate metrics, which
will be used to define a set of metrics such as minimum
or maximum number of invocations.

The Execution ClassesEC of a given services or
processt are defined as follows.

• For the simplest service Communication Control
Flow Graph, composed of a single invocation of
a services1 (or equivalently, of a single synchro-
nization primitive), EC = {< s1, 1 >} (or, in
case of wait or notify primitives on an evente1,
EC = {< we1 , 1 >} or EC = {< ne1 , 1 >},
respectively);

• For a Communication Control Flow Graph includ-
ing a sequence of service invocations or synchro-
nizationss1 . . . sn, EC = {< s1, 1 > · · · < sn, 1 >

};
• For a Communication Control Flow Graph includ-

ing a sequence ofn invocations of the same service
or synchronizations on the same event,s1 . . . s1,
EC = {< s1, n >};

• For a Communication Control Flow Graph made
of a loop construct (i.e., a cycle in the graph)
containing a subgraphg such thatECg = {<
s1, n >}, EG = {< s1, [n, n × k] >} where k

is the maximum number of iterations of the loop,
k = ∞ if there is no known bound;

• For a Communication Control Flow Graph includ-
ing two or more different paths (after loop re-
duction), each path is considered as a different
execution class.

For example, the Control Flow Graph shown in Figure
2 produces the following execution classes:

ECsi2
= {{< we1 , 1 >,< si3 , 1 >,< ne2, 1 >},

{< si3 , 1 >,< ne2, 1 >}}

indicating that the service considered, depending on
the execution class realized during a given invocation,
may or may not block itself on evente1. If si3 had
a non-blocking behavior, this would imply that the
invocation of servicesi2 would be blocking or non-
blocking depending on the control flow. This is the
maximum level of information that can be obtained
from our static analysis. Profiling could then be used
to provide frequency weights for the execution classes.

From the Execution Classes, we can compute anexe-
cution frequencymetrics, which will be useful to gauge
the ratios between bandwidths of different connections.

wait(buffer_full)

out_burst_port:put

notify(buffer_empty)

Fig. 2. Example of Communication Control Flow Graph

The Execution FrequencyECs2
(C, s1) of a service

s1 in services2 (or in processt) for an Execution Class
C is defined as the value of the second element of the
tuple < s1, x > in that Execution Class ofs2 (or t,
respectively).

Then, we can define a Maximum (or Minimum) Exe-
cution Frequency by defining:

EFmax
s2

(s1) = maxCECs2
(C, s1)

EFmin
s2

(s1) = minCECs2
(C, s1)

E. Blocking Components

Intuitively, Blocking Components are chains of service
invocations such that all methods within the chain are
blocked until the end of the computation.

We define the blocking property as a relation between
two services (or a process and a service)s1 ands2 that
is conditioned by a set of Execution Classes ofs1. We
say thats1 is blocked waiting fors2 under the set of
Execution ClassesECs2

s1
⊆ ECs1

if s1 ∈ ec,∀ec ∈
ECs2

s1
.

The definition of blocking property given above is
local, that is it characterizes the relation between a ser-
vice or process, and the services it may invoke. We can
extend the definition by considering that, ifs3 is invoked
in some Execution ClassesECs3

s2
⊆ ECs2

, then s1 is
blocked waiting fors3 when the control flows within the
execution classesECs2

s1
andECs3

s2
. So,blocking(s1, s2)

is true under the conditionECs2

s1
∧ ECs3

s2
.



9

Generator

Burst Buffer 1

Trigger 1

Dispatcher

Mean Computer 2Mean Computer 1

Burst Buffer 1

Monitor

Fig. 3. Structural overview of the system employed to exemplify
the application of the metrics

This shows that for the blocking relation the transitive
property holds; we can then defineblocking chainsas the
transitive closure of the blocking relation.

Finally, Blocking Componentsare formally defined as
the chains of modules and channels that implement the
services that appear in a blocking chain.

VI. EXAMPLE OF METRICS COMPUTATION

In order to show how the metrics are applied, and what
kind of information the designer can gather, we present
a sample TLM system design.

A. System Definition

The overall system implements the computation of the
mean of groups of 16 integers from a stream produced
by a generatorg1 and stored in aburst buffer bb1(a
structural diagram of the system in presented in Figure
3).

A burst buffer is a component that stores a given
number of data tokens, and then outputs them in a
single burst when it is properly triggered; this model is
particularly interesting since it implements and requires
services of different nature (control, data transmission).

The mean may be computed using two different algo-
rithms, implemented byim1 andfm1. A dispatcherd1 is
in charge of the choice betweenim1 and fm1. Then, the
result is sent to a second burst bufferbb2, which feeds
a monitorm1. Two trigger modules (t1 and t2) control
the burst buffers.

B. System MOIR Graph

The first step towards the computation of the system
design metrics is the parsing of the SystemC model to

the intermediate format (MOIR). Figure 4 shows the
MOIR graph for the sample system. For the sake of
clarity, in addition to the nodes (components) and edges
(connections) of the graph, the datatypes of the interfaces
involved in each connection have been annotated on the
edges of the graph.

C. Metrics Evaluation

For the purpose of this example, we use a simplified
notation. Since all interfaces are of theblocking puttype,
we only need to specify the datatype. Most channels
offer a single service, so the service will be identified
by the component name, except in the case of the burst
buffer, where the data type (bool or other) will be used
to distinguish different services.

In the end, the set of services implemented is:

S = {M1, BB2 : bool,BB2 : float,

IM1, FM1,D1, BB1 : bool,BB1 : int}

The same we can do with processes, so that:

T = {G1, T1, T2}

Within the system we have a set of four eventsE =
{e1, e2, e3, e4}:
• e1 : buffer full for the burst bufferbb1
• e2 : buffer emptied for the burst bufferbb1
• e3 : buffer full for the burst bufferbb2
• e4 : buffer emptied for the burst bufferbb2
We will therefore indicate the notify and wait on event

ei with the symbolsni andwi.
1) Execution Classes:The service provided by the

monitor m1 has a single, empty execution class:

ECM1 = {∅}

For the burst bufferbb2, we have the following
classes:

ECBB2:float = {{< n3, 1 >,< w4, 1 >}, ∅}

ECBB2:bool = {{< w4, 1 >,< M1, 1 >,< n3, 1 >},

{< M1, 1 >,< n3, 1 >}}

The two mean computation channels offer services
that have the same execution classes:

ECIM1 = ECFM1 = {{< BB2 : float, 1 >}}

The dispatcherd1 has the following execution classes:

ECD1 = {{< IM1, 1 >}, {< FM1, 1 >}}

For the burst bufferbb1, we have the following
classes:

ECBB1:int = {{< n1, 1 >,< w2, 1 >}, ∅}



10

G1 M1

T2T1

D1BB1

FM1

IM1

BB2
int

bool bool

int x 16
int x 16

int x 16

float

float

float x 32

Fig. 4. System MOIR Graph with indication of the interface datatypes

ECBB1:bool = {{< w2, 1 >,< D1, 1 >,< n1, 1 >},

{< D1, 1 >,< n1, 1 >}}

The three processes are characterized by the following
execution classes:

ECG1 = {{< BB1 : int, 1 >}}

ECT1 = {{< BB1 : bool, 1 >}}

ECT2 = {{< BB2 : bool, 1 >}}

2) Blocking Components:By indicating witheci
s the

i-th execution class of services ∈ S, we have that the
true blocking function ons, both in the flow-insensitive
and flow-sensitive version is as shown in Table III.

TABLE III

TRUE BLOCKING FUNCTION VALUES

Service True Blocking FS True Blocking

M1 False False
BB2:bool True ec

1

BB2:bool

BB2:float True ec
1

BB2:float

IM1 True ec
1

BB2:float

FM1 True ec
1

BB2:float

D1 True ec
1

BB2:float

BB1:bool True ec
1

BB2:float ∨ ec
1

BB1:bool

BB1:int True ec
1

BB1:int

Then, the blocking components are computed as fol-
lows:

BCG1 =



































































∅ ec2
BB1:int

{BB1} ec1
BB1:int∧

ec2
BB2:float

{BB1,D1, IM1, BB2} ec1
BB1:int∧

ec1
BB2:float

{BB1,D1, FM1, BB2} ec1
BB1:int∧

ec1
BB2:float

BCT1 =











































































∅ ec2
BB1:bool∧

ec2
BB2:float

{BB1} ec2
BB2:float∧

ec1
BB1:bool

{BB1,D1, IM1, BB2} ec1
BB2:float∧

ec1
BB1:bool

{BB1,D1, FM1, BB2} ec1
BB2:float∧

ec1
BB1:bool

BCT2 =

{

∅ ec2
BB2:bool

{BB2} ec1
BB2:bool

3) Memory Size:Table IV shows the memory size
metric computed for the components present in the
system.

TABLE IV

MEMORY SIZE METRIC COMPUTATION

Component Size

M1 none
BB2 1056 bytes
IM1 none
FM1 none
D1 512 bytes
BB1 544 bytes
G1 none
T1 none
T2 none

VII. POTENTIAL APPLICATIONS

The metrics so far defined and computed can be
exploited to infer other information useful to perform dif-
ferent implementation choices, such as the measurement
of the communication components (e.g. bus and fifo
width), bandwidth measurement and allocation, assign-
ment of communication functions to shared resources



11

(such as bus and shared memories). In this section, the
application of such metrics has been formalized and
exemplified.

A. Communication Channels Width

A direct application of the communication width is
the estimation of the width of the buses or fifos needed
to implement a given communication service.

The communication width metric is itself parametric
with respect to the operator used to combine the fine
grain (method-level) data. Different choices of the⊕
operator can be used for different purposes. Let us review
the most significant options, considering the effect on the
communication width metric computed on two modules
connected by a channel.

If ⊕ is max, then, given a fixed serial bandwidth
BWserial and a number of wiresnwires, the designer
imposes an upper bound to the transmission delay for
the parameters of the single service invocation. That is,
the following inequality is imposed:

max
s∈S

(ts) ≤
CWmax

BWserial × nwires

whereCWmax is the communication width metric, using
the maximum operator as⊕, ts is the communication
delay for the parameters of services, andS is the set
of all services considered.

If, on the other hand, the average operator is used
instead of⊕, then the designer is imposing an average
bandwidth. Ifts is the average communication delay for
a service inS, then

ts =
CWavg

BWserial × nwires

By weighting the communication widths of each service
by weightsp(s), s ∈ S, it is also possible to take into
account the distribution of service invocations – either
computed by means of simulation or derived from the
Execution Classes. In this case,

ts =
CWavg

BWserial × nwires

=

∑

s∈S p(s) × CW (s)

BWserial × nwires

Last, if the⊕ operator is replaced with the arithmetic
sum, the designer is imposing an upper bound to the
transmission delay, assuming that threads within the
initiator module can fire different methods offered by
the channel interface. In this case, the upper bound is
defined by the following inequality:

∑

s∈S

ts ≤
CW+

BWserial × nwires

whereCW+ is the communication width metric, using
the sum operator as⊕, while ts is the communication

delay for the parameters of services andS is the set of
all services considered.

B. Bandwidth Constraints Propagation

An application of the combined information obtained
by blocking chains, execution frequency and communi-
cation width is the estimation ofBandwidth Constraints
Propagation.

Suppose, in the simplest case, that a module invokes
a services1 on a given channel. If the communication
width of s1 is w1, and s1 invokes another blocking
services2, of communication widthw2, it can be inferred
that: for every amountw1 of data that is sent through
the communication link that implementss1, at least an
amountw2 of data will have to be sent through the link
on which is implementeds2 (we will refer to this link
with l2). If, for some reason, the bandwidth ofl2 is
limited, this will be reflected by the maximum data rate
transmission ofs1. In particular, if the bandwidth onl2
is limited to bw2, the data rate ofs1 will not be able to
go over:

bw1 ≤
w1

w2
× bw2

.
With the combined use of the aforementioned metrics,

it is possible to generalize this reasoning to the complex
cases of:

• services that can be either blocking or non–
blocking;

• bandwidth ratios between services that are imple-
mented by channels not directly connected (i.e., that
are “distant” in the system structure).

Since bandwidth is, in the general case, data depen-
dent, information that can be obtained is, most likely,
upper and lower bounds to the bandwidth ratio of two
different connections.

Let us consider the application of this principle to the
modeling example proposed. If we consider the blocking
componentBCT1, we observe that all the execution
classes for whichBB2 is invoked are present in the
condition list of all the blocking chains that contain the
execution classes for which theD1 is invoked. From this
information, we can infer that every timeD1 is invoked,
BB2 is invoked. Thus, ifall the connections toBB2
are limited in bandwidth, the limit is propagated toD1.
SinceBB2 can be invoked by eitherIM1 andIF1, the
bandwidth constraint onD1, when IM1 and IF1 are
limited to BWIM1 andBWIF1 will be:

BWFM1

WFM1
+

BWIM1

WIM1
≥

BWBB1

WBB1



12

To experimentally assess this relation, we simulated the
model imposing fixed communication latencies on both
FM1 and IM1, and measured the average bandwidth
with which D1 was invoked byBB1. SinceWIM1 =
WFM1 = 1 and WBB1 = 16 (width is measured in
words, and both integers and floating point are encoded
with a single word):

BWFM1 + BMIM1 ≥
BWBB1

16

The results of the simulation are shown in Table V,
where the relationship between bandwidths of the con-
sidered model connections is presented. Columns cor-
respond to simulations in which a bandwidth constraint
was imposed to a particular connection. It is possible
to observe that the bandwidth propagation relation holds
for all configurations.

C. Communication Resource Sharing

Another possibility offered by blocking components is
to characterize sets of communication services that can
be implemented with a shared resource, for example a
bus or a shared memory, with a minimum impact on the
bandwidth.

Let us consider two services,s1 and s2, and assume
that there is a blocking componentbc such thats1 ∈ bc

and s2 ∈ bc. This means that all the data transfers
caused by the execution ofs1 ands2 will happen sequen-
tially, without any overlap (not considering pipelining,
of course). If s1 and s2 data transfers are assigned to
the same communication resource, they will likely cause
negligible access conflicts. Again, such situations can be
directly detected on simple models, but their location
becomes rapidly unfeasible as the number of channels
and services grows.

D. Pipelining

In addition to the detection of potential shared re-
source, pipelining opportunities can also be investigated
by means of the blocking components. If the blocking
component chain is unidirectional – that is, data flow
through components of the chain in a single direction,
then an opportunity for pipelining arises. This can be
detected by computing the directionality metric on the
services of the blocking chain. IfBC is a blocking chain,
andsi, sj are services withinBC, then we can say that
the portion ofBC betweensi and sj is a pipelining
candidate if

∀k, i < k < j,D(sk, sk+1) = D(si, si+1)

Of course, the opportunity of pipelining for performance
improvements conflicts with the potential benefits of

resource sharing for the reduction of resource require-
ments, so a tradeoff must be considered. The bandwidth
bounds discussed in Section VII-A can be applied to
estimate the tradeoff point.

In the example proposed, we can observe that, for
every execution class,DD1 andBB1 always belong to
the same blocking component. This means that imple-
menting connections toDD1 and BB2 with a shared
connection should not cause a significant slowdown. In
order to verify this hypothesis, we simulated the effect
of shared implementation of connections. We considered
all the possible couples, and simulated resource shar-
ing among them. The overall slowdown was computed
as the ratio between non shared implementation aver-
age throughput and the current shared implementation
throughput. Results are shown in Table VI. Sharing
configurations with slowdown of 1.0 (no slowdown) are
exactly those foreseen by means of the metrics.

VIII. I NDUSTRIAL APPLICATION EXAMPLE

The analysis previously described has been imple-
mented in an automatic tool. The tool has parsing and
internal model representation capabilities, and provides
a general framework for the analysis of high-level C-
based models. In order to prove the effectiveness of the
analysis proposed in a realistic context, we applied the
information extracted to the design of a module that
is part of a telecommunication application developed at
Nokia Siemens Network [10]. The size of the model nec-
essarily required automatic computation of the metrics,
analysis “by hand” being too complex.

The high-level model considered represents the sub-
system of a base station that implements the ATM over
IP service. It is composed of 16 modules, connected by
22 connections (see Figure 5). The whole code is more
than 6000 lines long. All communications are modeled
as blocking Transaction Level Model service invocations.
The implementation problem considered is the optimiza-
tion of the maximum achievable throughput, using the
minimum possible set of communication resources. In
order to do so, we performed anon-overlappinganalysis,
to maximize resource sharing avoiding access conflicts.

The original problem space can be put into correspon-
dence with the set of all the possible partitions of all
the 22 connections contained in the model, making an
exhaustive exploration clearly unfeasible.

The analysis tool implementsnon-overlappinganaly-
sis, automatically computing a representation of the non-
overlapping relation for every couple of connections.



13

TABLE V

RELATION BETWEEN BANDWIDTHS OBTAINED BY SIMULATION

none bb1 d1 im1 bb2 bb2 m1 fm1 bb2
bb1 d1 7.58 2.05 6.64 2.54 1.33

im1 bb2 .20 .06 .18 .07 .04
bb2 m1 .45 .12 .40 .15 .08
fm1 bb2 .28 .08 .25 .10 .05

TABLE VI

SLOWDOWN DUE TO COMMUNICATION RESOURCE SHARING

bb1 d1 im1 bb2 bb2m1 fm1 bb2
g1 bb1 1.02 1.02 1.50 1.02
bb1 d1 1.00 1.52 1.00
im1 bb2 1.19 1.00
bb2 m1 1.32

Fig. 6. Hypertext-based navigable front-end to the structural metrics as extracted by the computation tool

On a Dual Core 2Ghz Pentium, the analysis took 344
seconds to be performed.

The information produced by the analysis was post-
processed and converted in a navigable html format (see
Figure 6).

From this information, classes of maximum size of
reciprocally non-overlapping connections are derived as
maximal cliques of the non-overlapping relation graph.

The static analysis of the model highlighted a partition
of the communications into five non-conflicting classes.
Each class can then be mapped onto a single communi-
cation resource, without causing any access conflict, and
thus avoiding any bandwidth degradation.

In Figure 7 the communication implementation struc-
ture is represented as a set of interconnected shared

resources.
Moreover, the directionality metrics suggests that there

are candidates for pipeline implementation (see Sec-
tion VII-D). In the present case, the non-overlapping
class comprehending communication between the com-
ponentsOAM DEMUX, DEMUX, the set ofA2IP can
be implemented as a set of interstage pipeline buffers,
since all its communications actions happen in the same
direction.

IX. CONCLUDING REMARKS

We presented a framework for the automatic analysis
of system models described at transaction level. This



14

OAM_DEMUX TRAFFIC SHAPER

MONITOR_TX

MONITOR_RX

A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP

DEMUX

RAM_RX

BRANCH_TX

RAM_TX

Fig. 5. Structural representation of the system under analysis

DEMUX

TRAFFIC SHAPER

MONITOR_RX

MONITOR_TX

RAM_TX

BRANCH_TX

RAM_RX

OAM_DEMUX

A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP A2IP

Fig. 7. Implementation of the system communication with five
shared resources

level of abstraction is effective in modeling early exe-
cutable descriptions of systems under design, as well as
first refinement phases. Thus, it is particularly suitable
as front–end language for the design of hw/sw systems,
and is producing increasing interest, in the EDA field,
towards methodologies and tools that allow to best
exploit the information contained in such models.

We take under consideration the SystemC transaction
level of abstraction modeling, as defined by the OSCI
steering consortium. Structural and behavioral features of
models were abstracted and mathematically formalized.
Relying on the formalization, a set of metrics for the esti-
mation of the communication design choices effects was
defined, and their computation exemplified. Different
design application scenarios were drawn, and the tech-

niques proposed were applied to the example proposed.
Static analysis techniques can be particularly valuable for
large designs. In these designs, structural properties and
features cannot be detected manually or by exhaustive
simulation as they would be in simpler design cases. On
the other hand, the proposed methodology allows these
features to be highlighted automatically, without need for
time-consuming simulation.

REFERENCES

[1] SystemC Website. http://www.systemc.org.
[2] Giovanni Agosta, Francesco Bruschi, and Donatella Sciuto.

Static analysis of transaction-level models. InDAC ’03: Pro-
ceedings of the 40th conference on Design automation, pages
448–453, New York, NY, USA, 2003. ACM Press.

[3] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan.
System Design with SytemC. Kluwer Academic Publishers,
2002.

[4] Christopher K. Lennard, Patrick Schaumont, Gjalt de Jong,
Anssi Haverinen, and Pete Hardee. Standards for system-level
design: practical reality or solution in search of a question? In
Proceedings of the conference on Design, automation and test
in Europe, pages 576–585. ACM Press, 2000.

[5] Y. Le Moullec, N. Ben Amor, J-Ph. Diguet, M. Abid, and J-
L. Philippe. Multi-granularity metrics for the era of strongly
personalized socs. InDATE ’03: Proceedings of the confer-
ence on Design, Automation and Test in Europe, page 10674,
Washington, DC, USA, 2003. IEEE Computer Society.

[6] Adam Rose, Stuart Swan, John Pierce, and Jean-Michel
Fernandez. Transaction level modeling in systemc.
http://www.systemc.org.

[7] F. Salice, L. Del Vecchio, L. Pomante, and W. Fornaciari.
Partitioning of embedded applications onto heterogeneousmul-
tiprocessor architectures. InSAC ’03: Proceedings of the 2003
ACM symposium on Applied computing, pages 661–665, New
York, NY, USA, 2003. ACM Press.

[8] Donatella Sciuto, Fabio Salice, Luigi Pomante, and William
Fornaciari. Metrics for design space exploration of hetero-
geneous multiprocessor embedded systems. InCODES ’02:
Proceedings of the tenth international symposium on Hard-
ware/software codesign, pages 55–60, New York, NY, USA,
2002. ACM Press.

[9] A. Siebenborn, O. Bringmann, and W. Rosenstiel. Worst-
case performance analysis of parallel, communicating software
processes. InProceedings of the Tenth International Workshop
on Hardware/Software Codesign, pages 37–42, 2002.

[10] Francesca Tonetta. Design example 3, implementation
based on the icodes tools and methodology. Deliverable
ICODES/SIEMENS/R/D38/1.0, IST-04452 ICODES Project,
2007.

[11] F. Vahid and D. Gajski. Closeness metrics for system-level
functional partitioning. InProceedings of the European Design
Automation Conference (EuroDAC), 1995.

[12] Sungjoo Yoo, Gabriela Nicolescu, Damien Lyonnard, Amer
Baghdadi, and Ahmed A. Jerraya. A generic wrapper archi-
tecture for multi-processor soc cosimulation and design. In
Proceedings of the ninth international symposium on Hard-
ware/software codesign, pages 195–200. ACM Press, 2001.

[13] Jianwen Zhu, Daniel D. Gajski, and Rainer Doemer. Syntax
and semantics of the spec C+ language. InProceedings of the
SASIMI Workshop, pages 75–82, 1997.


