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Abstract— In this paper, we face the problem of P-equivalence
Boolean matching. We outline a formal framework that unifies
some of the spectral and canonical form-based approaches to the
problem.

As a first major contribution, we show how these approaches
are particular cases of a single generic algorithm, parametric with
respect to a given linear transformation of the input function.

As a second major contribution, we identify a linear trans-
formation that can be used to significantly speed up Boolean
matching with respect to the state of the art. Experimental results
show that, on average, our approach is five times faster than
the main competitor on 20-variables input functions, and scales
better, allowing to match even larger components.

I. I NTRODUCTION

In the synthesis of Boolean functions using a target tech-
nology, a problem known astechnology mapping, one of
the main issues is to determine whether a library contains
a component that can implement a given function. Each
component implements a set of functions that are all equivalent
when permuting or negating the input lines.

To determine whether a given library cellC, represented
by a Boolean functionfC , can implement a functionf , it is
therefore necessary to determine whether there is a permuta-
tion π of the input variables offC such thatfC ◦π = f . This
problem is known as P-equivalenceBoolean matching[4], and
it is a key step in any technology mapping synthesis process
because the time needed to match a function with a component
of a library significantly impacts on the synthesis time.

Over the past 30 years, many methods and algorithms have
been defined in literature to face this problem [4]. Neverthe-
less, new effective approaches have recently been developed,
and have gained the interest of the scientific and industrial
community, proving that the problem is still challenging.

In this paper, we propose a novel approach that tries to
unify some of the most effective Boolean matching approaches
based oncanonical forms, ranging from those based on
spectral function analysis [10], defined and developed in the
’70s, to the most recent, based on functions representationby
means of cofactors [1].

This paper is an extended version of [2]

The present work does not consider the N-equivalence
problem, since efficient canonical form-based solutions for this
problem are already stated in [5], and can be integrated with
P-equivalence canonical forms [7].

We point out that the previous approaches are particular
cases of a more general framework, parametric with respect
to a linear function transformationρ. We give a formal
description of a set of linear transformationsρ that can be
successfully employed in Boolean matching. Moreover, we
identify a particularρ that yields better performance than
the previous approaches, by combining the ability to identify
the canonical form using only the values of the transformed
function in few points with an efficient, on-demand algorithm
to individually compute those values.

A comparison with the existing state of the art in the field
has been carried out implementing our algorithms by means
of the well knownCUDD Binary Decision Diagrams (BDD)
manipulation package [16], since BDDs are the most flexible
representation format for Boolean functions, and are widely
adopted both in the industry and in research works. For an
accurate and fair comparison, we reimplemented the most
performant previous approach [1], and performed tests on both
random function sets and specific functions that are considered
worst cases.

The paper is organized as follows. In Section II we address
the state of the art in the field. In Section III we introduce
the unified framework for the computation of some canonical
forms, as well as a new transformation that can be applied to
Boolean functions to speed up the computation of the canoni-
cal form. In Section IV we provide experimental evidence that
shows how our technique improves over the state of the art in
terms of performance. Finally, we draw some conclusions and
outline future works in Section V.

II. RELATED WORKS

The problem of Boolean matching has been the subject
of many research works. [4] provides a survey of the main
approaches. There are three main classes of matching algo-
rithms: spectral methods, signature-based methods, and canon-
ical form-based methods.
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Spectral methods [3], [8], [14] exploit the fact that NPN-
equivalence in the time domain translates to equivalence under
coefficient permutations in the sequence domain of the Walsh
Transform. These methods suffer from exponential complexity
of the average case, since the cost of computing a Fast Walsh
Transform is polynomial in the size of the input set (the last
column of the truth table), which is of size2n with respect to
the number of input variables. Little optimization is possible,
except parallelizing the transformation algorithm, sinceall
coefficients are computed at the same time, even when a few
of them could be used to detect non-equivalent functions.

Signature-based methods use a compact representation of
the Boolean functions. The signature is usually not a complete
representation of the function, but it is supposed to include
sufficient information to allow non-equivalent functions to be
detected. In [15], it is noted that signature-based methods
fail in detecting alias groups. A survey of signatures used in
Boolean matching can be found in [17].

Canonical form-based methods use functionsC that map
any Boolean functionf to a C(f) such thatf ′ ∼ f ⇔
C(f ′) = C(f). [5] introduces a canonical form for N-
equivalence, and a semi-canonical form for P-equivalence.
More recent developments have led to canonical forms for
P-equivalence as well [1], [7], [11]. In this paper, we com-
pare our approach to the most performant of these previous
works [1].

Other recent approaches such as [12] focus on symmetry
detection. These works are orthogonal to our own, and may
be usefully integrated with it.

Finally, other approaches such as [6], [9] rely on a pre-
liminary exploration of the function space that allows the
precomputation of minterm positions. This information is then
saved into huge lookup tables. [6] improves the approach
by pruning the search tree, using signatures (including first
order cofactors) and symmetry checks. These approaches are
slower than canonical form based methods [1], except for very
small numbers of input variables, but their main drawback
is the large memory requirements, which effectively limit its
applicability to functions with up to a maximum of dozen
variables [6], [9]. Canonical form-based approaches, on the
other hand, scales well up to over twenty input variables.

III. P-EQUIVALENCE CANONICAL FORM

In this section, we introduce a unified approach to canonical
form-based boolean matching. First, we define a generalized
canonical form, and discuss the property of the function repre-
sentation needed to compute it. Then, we describe the variable
ordering algorithm that will be used in the experiments.

A. Generalized Lexicographic Canonical Form

The Boolean matching problem can be formally stated as
follows: consider two Boolean functionsf ′ and f ′′, of n
variables each. Consider now all the possible permutations
P of the input variables off ′ (a variable permutation can
be represented as a bijective function that maps an ordered
variable sequence onto itself):

P =
{

π | (xn−1, . . . , x0) 7→
(

x
π(n−1)
n−1 , . . . , x

π(0)
0

)}

If we considerπ as an operator that can be applied to a
function, we can denote the functionf with permutated inputs
with the expressionf◦π. f ′ is then P-equivalent (orit matches)
to f ′′ if and only if there exists aπ ∈ P such thatf ′◦π = f ′′.

One of the classes of approaches for the solution of the
boolean matching problem relies on the use ofcanonical
representationsof functions. A canonical form is obtained by
the application of a transformationC that maps any Boolean
function f to a C(f) in such a way that any other function
f ′ P-equivalent tof has the same canonical formC(f): f ′ ∼
f ⇔ C(f ′) = C(f). A canonical form for Boolean functions
can be naturally introduced by representing functions as strings
composed of their ordered output values. The lexicographic
comparison of such strings induces an ordering and allows the
definition of the canonical form as the lexicographic maximum
of the set of P-equivalent functions:

C(f) = max
π∈P
{f ◦ π}

It is straightforward thatC(f) has the properties of a canonical
representation off with respect to P-equivalence.

Note that the lexicographical maximum can be defined for
all those function families that have a codomain on which
an order relation is defined. Also, the above definitions can
be restated for the dual case of the lexicographical minimum.
In the rest of the paper, we will consider only the case of
lexicographical maximum.

A trivial way to identify the lexicographical maximum of
a P-equivalence class would be to apply all the possible per-
mutations and to choose the maximal. However, this method
incurs in anO(n!) complexity, wheren is the number of input
variables. An efficient algorithm to find the lexicographical
maximum of a given function is presented in [1]. This algo-
rithm still has to face the issue of dealing with functions that
have a codomain of small cardinality ({0, 1}), and therefore
cause frequent collisions when trying to discriminate variables.
In fact, the more a function exhibits different output values,
the easier it is for the algorithm to assess a variable ordering,
and the ability to exhibit different output values depends on
the cardinality of the codomain.

That is why in [1] the values of a Boolean functionf are not
directly used as the input of the algorithm. Instead, a bijective
linear transformation is first applied to the function. The
transformation computes, for each elementI of the powerset
of the set of input variables{xn−1, . . . , x0}, the number
of minterms in the cofactor associated with that element,
that is |fI |. Of course, thecofactor transformationis not
the only linear transformation that can be employed: it is
effective because it allows the application of the canonization
algorithm by comparing only a small number of values of the
transformed function, and there is an efficient way to compute
these values.

B. Variable Ordering Algorithm

Algorithm 4 gives the picture of a generalized canoniz-
ing algorithm in a high-level pseudo-code. For the sake of
clarity, implementation-dependent optimization details(e.g.,



3

BDD cache optimizations) are not reported. The algo-
rithm takes as input a Boolean function ofn variables
f b(xn−1, xn−2, . . . , x1, x0), represented by an ordered se-
quenceW = (W0, W1, . . . ,W2n−1) of |W | = 2n co-
efficients. The values of these coefficients depend on the
representation chosen for the Boolean function. For instance,
the Boolean function may be represented by the last column
of its truth table.

The goal of the algorithm is to produce a listL of candidate
canonizing permutations of the input variables. The permuta-
tion in L corresponding to the lexicographical maximum (see
line 19 in Algorithm 4) is selected as the one that generates
the canonical form of the assigned functionf b [1]. If more
permutations lead to the canonical form, it is sufficient to
identify any one canonizing permutation.

Algorithm 4 : Generalized algorithm for the computation
of the canonizing permutation.

Input : V = {0, . . . , n− 1} as the set of input variables
indexes, (v = {v0, . . . , vn−1});
W = (W0, . . . ,W2n−1)as coefficients
corresponding to an-variate Boolean function.

Output : List of candidate canonizing permutations,L.
Data: Let W i be the coefficients ofi-th order,

0 ≤ i ≤ n, in W .
begin1

C ← {V �
S
∼}2

G ← SortW 1(C� =W 1)3

L← {G}4

foreach i ∈ [0, |C|) do5

foreach G ∈ L do6

if |gi| 6= 1, gi ∈ G then7

L← L�G8

foreach Cm ∈ gj do9

G(m) ← G� gj ∪ {Cm} ∪ gj �Cm10

L← L ∪ G(m)11

/* |gi| = 1, ∀gi ∈ G ∧ ∀G ∈ L */12

foreach G ∈ L do13

L← L�G14

foreach gk ∈ G : k > i do15

Gk ← SortW 2
gi

(gk � =W 2
gi

)16

G ← G� gk ∪Gk17

L← L ∪ G18

return max(L)19

end20

Every coefficient composing the representation of the func-
tion can be uniquely associated to one element of the input
variables power-set. Letv = {xn−1, xn−2, . . . , x1, x0} be the
set of input variables andV = {0, 1, . . . , n−1} be the set of
input variables indexes. GivenD = {0, 1, . . . , 2n− 1} as the
set of indexes corresponding to the positions of coefficients
W , the following relationψ defines a bijective map between
the power-set ofV , P(V ), and the setD:

ψ : P(V )→ D

ψ(I) =

{
∑

x∈I 2x if I ∈ P(V ) � ∅
0 if I = ∅

The inverse of theψ relation can also be expressed as:

ϕ : D → P(V )

ϕ(m) =

{

{0 ≤ i < ⌈log2 n⌉ | [m/2
i] is odd} if m 6= 0

∅ if m = 0

Using the positional indexes inD, it is possible to define an
equivalence relation amid coefficients inW as follows:

∀ i, j ∈ D, Wi ∼Wj ⇔| ϕ(i) |=| ϕ(j) |

whereWi andWj are a pair of coefficients inW .
If Wi ∼ Wj we say thatWi andWj have the same order

k =| ϕ(i) |=| ϕ(j) |.
This way, we can partition the set of coefficientsW into

a series of disjoint setsW 0 . . .Wn. We denote the generic
elementW k as the set of coefficients of orderk, wherek ∈
[0, n] and |W k |=

(

n
k

)

.
A total ordering relation≺ amid the coefficients inW is

naturally inferred from the ordering of the binaryn-uples
identified with the elements ofP(V ) by theϕ andψ maps. In
each binary tuple an element is 1 if the corresponding variable
in v is included in the selected set ofP(V ), 0 otherwise.
Thus,≺ defines the dyadic ordering of the coefficientsW . In
the following, representations of the Boolean functionf b are
assumed to be sorted according to≺.

Now, let us introduce the notion ofsymmetry equivalence
relation

S
∼ on the set of input variablesv. Given an ordered set

of coefficientsW = (W0, . . . ,W2n−1) representing the values
of a Boolean function, any two input variablesvi andvj , with
i, j ∈ [0, n − 1] and i 6= j, are consideredequivalentif and
only if the sequence of coefficients values resulting after the
exchange of the variablesvi andvj is indistinguishable from
the original one.

This notion of symmetry equivalence is consistent with the
one adopted in [1], although other types of symmetries can
be defined. The validity of Algorithm 4 is orthogonal to the
problem of symmetry detection in the sense that different
assumptions about the notion of symmetry can reduce the
number of equivalence classes providing possibly a perfor-
mance improvement.

Given k =| V �
S
∼| as the number of cosets inferred by

the relation
S
∼, the set of input variables can be thought as

the disjoint union of the corresponding symmetric equivalence
classes:

V ←
k−1
⋃

j=0

Cj

whereCj = {vi ∈ v : vi
S
∼ cj , 0 ≤ i < n}, 0 ≤ j < k being

cj ∈ Cj the representative element of the generic equivalence
class.

Now, the application of a transpositionτ =
(

0...h...k...n−1
0...k...h...n−1

)

on the input variables of the Boolean functionf b corresponds
to the operation of swapping all the pairs of coefficientsWi

andWj ∀ i, j with i < j such that:

ϕ(i) � {k, h} = ϕ(j) � {k, h} ∧

(k ∈ φ(i) ∧ h ∈ ϕ(j)) ∨ (k ∈ ϕ(j) ∧ h ∈ ϕ(i))
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In general, a permutationσ can be decomposed into a func-
tional product of transpositionsσ = τ0 ◦ τ1 . . . ◦ τt, so
the above correspondence can be naturally extended from
transpositions to permutations.

Algorithm 4 classifies the set of input variables indexes
V into a setC of

S
∼-equivalence classes. Subsequently, it

collects the classes ofC that have the same first order co-
efficient values (W 1) into groupsgj ; the set of these groups
is denoted asG. More specifically, the generic groupgj =
{Ci1 , Ci2 , . . . , Cit} ∈ C� =W 1 includes all equivalence
classes such thatWψ({ci1

}) = . . . = Wψ({cit
}). The setG is

then sorted according to values ofW 1, making it an ordered
sequence.

Initially, there is a singleG in L, possibly containing groups
gi such that |gi| > 1. The canonizing method proceeds
examining the first groupg0 in this G.

If g0, is composed of a single
S
∼-equivalence class, i.e.g0 =

{Cit}, we consider such groupresolved, which means that,
with respect to the final canonizing permutation, a position
for the corresponding input variables has been detected.

The second order coefficientsW 2
g0
⊂W 2, with

W 2
g0

= {Wk ∈W
2 : ∀Cit ∈ g0,

Cit ⊆ ϕ(k), |ϕ(k)| = |Cit |+ 1 }

will then be used to try and order the subsequent (possibly
unresolved) groupsgk, k > 0, as shown in lines 13÷18 of
Algorithm 4.

In next iterations of the external loop (line 5),g1, . . . gj−1

are considered, all such that|gi| = 1. Thus, remaining unre-
solved groups may be ordered using second order coefficients.

On the other hand, when the considered groupgj is com-

posed of more than one
S
∼-equivalence classCit , the algo-

rithm must exhaustively try to splitgj into a resolved group
containing a singleCit , and a second, possibly unresolved,
groupgj�{Cit}. Lines 6÷11 of Algorithm 4 show that new
possible solutionsG are added toL in this case.

The algorithm will then try to resolvegj�{Ci} using the
second order coefficientsW 2

{Ci}
, as it did when the group

was composed by a single symmetry equivalence class (lines
13÷18).

From the multiple solutions generated, we choose the single
canonical form using higher order coefficients (line 19). Since
these are complete solutions, we simply compare higher order
coefficients in dyadic order, which amounts to selecting the
lexicographical maximum among the solutions.

Example 3.1:Let us consider the following Boolean func-
tion: f b = (x0 ⊕ x1)(x0x1 + x2), represented by the last col-
umn of the associated truth tableW = (0, 1, 0, 0, 0, 1, 1, 0).
For this function,V = {0, 1, 2}, n = |V | = 3, P(V ) =
{∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, V }.

This can be easily seen by considering the entire truth table

of f b:
x2x1x0 f b

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The computation of the first and second order coefficients
assignsW 1 = {W1, W2, W4} = {1, 0, 0} and W 2 =

{W3, W5, W6} = {0, 1, 1}, respectively. Then proper
S
∼-

equivalence classes (i.e., excluding the empty set∅) are:

C = {C0 = {0}, C1 = {1}, C2 = {2}}

The first collection of equivalence classes is computed by
considering the first order coefficientsW 1:

G = {g0 = {C0}, g1 = {C1, C2}}

Sorting the variables with respect to the first order coefficients,
the algorithm is able to discover that, in the canonical per-
mutation, variablex0 precedes variablesx1 and x2, because
W1 > W2 andW2 = W4.

Since the first groupg0 = {C0} is constituted by a single
S
∼-equivalence class, it is resolved, and the second order
coefficientsW 2

g0
= {W3,W5} can be used to try to solve

group g1 = {C1, C2}. In our case,W3 < W5, so within
g1 classC2 can be sorted before classC1. The canonical
permutation forf b is thereforeπ =

(

0 1 2
0 2 1

)

.

C. Linear Transformations compatible with the Canonization
Algorithm

The coefficients derived from the cofactor transformation
employed in [1] are not the only possible choice: other works
have employed, e.g., the Walsh coefficients instead of the co-
factors [3]. To minimize the canonization time, it is important
to be able to select the most performant transformation. To this
end, we first define a set of compatible linear transformations
that can be employed in conjunction with Algorithm 4. Then,
we explore the set of compatible linear transformations and
identify a specific transformation that is strictly more powerful
than the cofactor form employed in [1].

Consider a generic multivariate Boolean function
f b(xn−1, . . . , x0) and a linear operatorρ with its associated
matrix R. Let us consider all thoseρ that are invertible and
commutative with respect to any permutationπ of the input
variables off b. The idea is that, in general, it can be easier
to maximumf b ◦ ρ than f b. To do so, we must show that
finding the lexicographical maximum off b ◦ ρ leads to a
canonical formC(f b), i.e. a uniquely identified representative
element of the P-equivalence class off b.

To this end, for some class of transformationsρ, we need
to prove that the following equality holds:

f b ◦ ρ ◦ π = f b ◦ π ◦ ρ ∀π ∈ P
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Definition 3.1: A dyadic transposition matrixΣ is a trans-
position matrix such that its application to the vector of values
assumed by a Boolean function is equivalent to the application
of a transpositionπ to the input variables of the same function.

Given any Boolean function, sketched by its truth table,
with the minterms in the usual dyadic order, if we transpose
variablesvi andvj , the last column of the truth table changes
according to the right product by aΣ matrix.

By construction,Σ keeps into account the sequential dyadic
ordering of the truth table. As a consequence,Σ is a bisymmet-
ric permutation matrix, because each of its columns contains
a single one and globally the following equality chain holds:
Σ = ΣT = Σ−1 = JΣJ , whereJ is the exchange matrix
(J2 = I).

Theorem 3.1:Consider a Boolean functionf b represented
as the vector of its values in the dyadic order of its domain. Let
R be the matrix associated with a linear transformationρ of the
Boolean functionf b, andΣ be a dyadic transposition matrix.
A sufficient condition for the equalityf b

T
RΣ = f b

T
ΣR to

hold is thatR is definite positiveand either symmetric or
persymmetric.

Proof:

f b
T
RΣ = f b

T
ΣR⇔ RΣ = ΣR

If R is persymmetric, thenR = JRTJ . Let us consider the
following derivation:

RΣ = JRTJJΣJ = JRTΣJ

ΣR = JΣJJRTJ = JΣRTJ

RΣ = ΣR⇔ JRTΣJ = JΣRTJ ⇔ RTΣ = ΣRT

Therefore,RΣ = ΣR is equivalent to:

(R+RT )Σ = Σ(R+RT )

whereR+RT is bisymmetric by construction. So, in the rest
of the proof, we will assume thatR is a symmetric matrix,
without prejudice for the generality of our proof.

Due to the well-known theorem of simultaneous diagonal-
ization [13], being the two matricesR andΣ both symmetric,
andR being definite positive (that is, its eigenvalues are all
positive), there exists a common orthogonal diagonalization
matrixQ (QT = Q−1), such thatQTRQ = ΛR andQTΣQ =
ΛΣ.

Then, since diagonal matrices always commute, the follow-
ing equalities hold:

RΣ = QΛRQ
TQΛΣQ

T = QΛRΛΣQ
T =

= QΛΣΛRQ
T = QΛΣQ

TQΛRQ
T = ΣR

Corollary 3.1: Let Σ′ be a permutation matrix correspond-
ing to the subsequent application of several dyadic transposi-
tionsΣ′ = Σ1·Σ2 . . .Σm. Then, a linear transformation matrix
R andΣ′ commute.

Proof:

RΣ′ = R (Σ1 . . .Σm) = Σ1R . . .Σm = (Σ1 . . .Σm)R = Σ′R

The most popular transformations used in canonical form
Boolean matching are the Walsh and the cofactor transfor-
mations. The Walsh transform [3] is defined by means of
the Hadamard matrix. The coefficients of the cofactor rep-
resentation [1], on the other hand, are computed as the onset
cardinalities of the cofactors of the Boolean function.

The Hadamard matrixHn of rank n = 2k, k ∈ N+ can be
expressed as:

H1 = [1]

H2n =

[

Hn Hn

Hn −Hn

]

We observe that the computation of the cofactor onset sizes
|fI |, where I ranges in the power-set of the set of input
variables, can be performed by means of a matrixCn defined
much like the Hadamard matrix:

C1 = [1]

C2n =

[

Cn 0
Cn Cn

]

Since the matrixCn has all the eigenvalues equal to1,
Theorem 3.1 can be applied. Thus, we can conclude that
the cofactor representation is suitable for canonical form
computation.

As a major result of this work Theorem 3.1 defines an entire
class of transformations that can be employed in canonical
form Boolean matching using the same approach as that used
with the cofactor representation.

Note that in the case of the Hadamard matrix, we cannot di-
rectly apply Theorem 3.1. However, the Walsh transformation
is actually obtained by a Walsh matrix, which is the Hadamard
matrix with its lines reordered by applying bit reversal and
Gray code sequential ordering [3]. Indeed, the resulting Walsh
matrix W is symmetric, andW 2 is diagonal (specifically,
W 2 = nI), and we can prove that the Walsh matrix commutes
with dyadic trasponsition matrices.

Theorem 3.2:Let W2n×2n , n ≥ 1 be a Walsh matrix, and
Σ be a compatible dyadic transposition matrix. Then

WΣ = ΣW
Proof: Proving thatWΣ = ΣW is equivalent to proving

that (WΣ)(ΣW ) = (ΣW )(WΣ). The following derivation
can be used to this end:

ΣWWΣ = ΣnIΣ = nI = WW = WΣΣW

sinceΣ2 = I.
The statement of Corollary 3.1 holds for the Walsh matrix

as well, proving that it commutes with generic dyadic permu-
tation matrices. Theorem 3.1 and Theorem 3.2 define two sets
of acceptable linear transformations compatible with the gen-
eralized variable ordering algorithm described in SectionIII-B.

D. Generalization to Alternative Approaches

In this Section, we survey the approaches to the exploration
of the permutations tree presented in [7], [11]. We show
that, when the same representation of Boolean functions is
employed, such algorithms bring to the same canonical forms
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as Algorithm 4, and can benefit from representations that allow
performace improvements in that algorithm.

In [7] the authors define a canonical form based upon a
cost function associated with the onset representation of a
function. Given ann-variate Boolean functionf , represented
by its k mintermsM = {m0, ...mk−1}, the canonical form
is constructed by minimizing a cost function defined as the
integer number corresponding to the classical binary encoding
of the string obtained by juxtaposing the minterms resulting
from a permutation of the input variables. The authors, after
defining the canonical form, provide an effective branch and
bound procedure to compute it.

However, it is possible to show that the canonical form
defined in [7] is the same as the one produced by Algorithm 4
when applied to a function described by means of its truth
table.

The cost function is affected by both the juxtaposition order
of the minterms and the permutation of variables. However,
given a permutation of the input variables, there is a single
juxtaposition order of the minterms that minimizes the cost
function. It is immediate to see that the minimizing sequence
of minterms is the increasing lexicographical order of function
output values. An input variables permutation, on the other
hand, changes the onset elements.

Let us consider the truth table off , where the rows are in
dyadic order. For a 3-variate function, the truth table is given
by the sequence:f(000), f(001), f(010), f(011), f(100),
f(101), f(110), f(111).

The generalized canonical form computation defined by
Algorithm 4, applied tof , lexicographically maximizes the
string of function outputs. Intuitively, thisshifts the 1s of
the Boolean function towards the minterms that have a lower
contribution to the cost function of [7]. Thus, it reasonable
that the two operations (lexicographical maximization andcost
minimization) lead to the same result.

For a more formal proof, consider a functionf , represented
by its onsetM = {m0, ...mk−1}. Its minimized cost function
is obtained by juxtaposing the minterms starting from the lexi-
cographically smallest, in ascending order. Any other sequence
would correspond to a greater cost.

Let c(f ◦ π′) be the cost function associated with the
minimizing permutationπ′ of the input variables according
to [7].

Let us now consider the lexicographical maximumf ◦ π′′

of function f obtained from Algorithm 4, along with the
canonicizing permutationπ′′. We want to show thatf ◦ π′

andf ◦ π′′ are the same.
Assumef ◦ π′ 6= f ◦ π′′ and consider the first output value

for which f ◦ π′ andf ◦ π′′ differ. If this value is1 for f ◦ π′

and0 for f ◦π′′, thenπ′′ is not the permutation that generates
the canonical form according to Algorithm 4 – sincef ◦ π′

is lexicographically greater. On the other hand, if the value is
0 for f ◦ π′ and1 for f ◦ π′′, thenπ′ is not the permutation
that generates the canonical form according to [7]. Since we
are considering the first difference betweenf ◦ π′ andf ◦ π′′,
there is a common prefix to their cost functionsc(f ◦ π′) and
c(f ◦π′′). The first minterm off ◦π′′ after the common prefix
corresponds to the first difference in the output values, while

that off ◦π′ corresponds to a later output value. The minterm
in c(f◦π′′) is lexicographically smaller than the corresponding
one inc(f ◦π′), as the output values are considered in dyadic
order. Thus,c(f ◦ π′′) < c(f ◦ π′) andπ′ does not generate
the canonical form of [7].

To give a better intuition of the reasoning, let us introduce
the following example.

Example 3.2:Consider the Boolean functionf b = (x0 ⊕
x1)(x0x1 + x2) from Example 3.1 and its minterm represen-
tation:

M = {m1,m5,m6} = {001, 101, 110}

According to the algorithm in [7], we first choosem1, without
any variable permutation (it is already minimal). However,
we just learnt thatx0 will not be permuted at all, as the
choice of m1 implies a partition of the minterms in two
subsets, and no permutations will happen between variables
of different subsets, as such a permutation would replacem1

with a different minterm of higher cost. The rightmost subset
of m1 only containsx0, so that its position is fixed in the
canonizing permutation. Then, we considerm5, and replace
it with m3, i.e. we permutex2 andx1. This has no effect on
the other minterms – the algorithm guarantees it will have no
effect on minterms already sorted, andm6 has the same bits
for x2 andx1.

Thus, the canonicizing permutation isπ =
(

0 1 2
0 2 1

)

, just as
obtained using Algorithm 4.

Conversely, the same reasoning can be applied to the
two algorithms when a different representation, e.g., the one
obtained through the cofactor transformation, is used. To this
end, it is sufficient to replace lexicographic ordering of strings
on the alphabet{0, 1} with a total ordering relation on the set
of numerical coefficients.

A previous approach using a similar exploration of the
permutations tree is reported in [11]. In this case, the canonical
form is explicitly defined as the lexicographic maximum of
the bit strings representing the truth table. The canonizing
permutation is constructed by exploring the permutations tree
and pruning it when a lexicographic non-maximum prefix is
found.

An important conclusion is that a different representation
than the truth table could also be applied to the algorithms
proposed in [7], [11]. The truth table is not especially efficient:
intuitively, if at a given depth the permutation tree has been
pruned so that all the prefixes of surviving branches are equal,
then moving to the next level will only allow to find two sets
of subtrees with different prefixes.

We will show in the following section how to obtain efficient
representations, and measure their effectiveness at reducing the
cost of computing the canonizing permutation.

E. The Shifted Cofactor Transformation

Given the definition of a family of acceptable linear trans-
formations, we now define one specific transformation that
allows us to achieve better performance in computing the
canonical form than the previous works, theshifted cofactor
representation.
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We start from the cofactor representation, which proved
very effective [1]. As shown previously, the canonical form
computation algorithm works better if the representation of
the functionf ◦ ρ has a smaller number of equal values.

Given a functionf(xn−1, . . . , x0) and an assigment to its
variablesX = (xn−1, . . . , x0), xk ∈ {0, 1}, the corresponding
element of the cofactor representation is obtained as follows.
Consider the setI of input variables that are assigned a value
of 1 in X, I = {xk ∈ {xn−1, . . . , x0}|xk = 1}, then summing
all the output values of the cofactor off with respect toI,
fI :

(f ◦ ρc)(X) =

2n−|I|−1
∑

m=0

fI(m) (1)

Note that the output values offI contribute to(f ◦ ρc)(X)
with a value of0 or 1.

Let us consider a second representation of functionf , f ◦ρ′

that satisfies Theorem 3.1. If the condition

(f ◦ ρ′)(X) = (f ◦ ρ′)(Y )⇒ (f ◦ ρc)(X) = (f ◦ ρc)(Y ) (2)

holds for all pairs of assignment tuplesX andY corresponding
to sets of input variablesI and J with the same cardinality
(|I| = |J |), then computing the canonical form fromf ◦ ρc
will take at least as many operations as fromf ◦ ρ′.

The condition in Equation 2 is not needed for all pairsX
andY such that|I| 6= |J |, because in that case(f ◦ ρ′)(X)
and(f ◦ρ′)(Y ) are coefficients of different order, and thus are
never compared in Algorithm 4.

Thus, a transformationρ′ that satisfies Equation 2 has a
chance to improve canonization performance. Equation 2 and
Theorem 3.1 limit the space of transformationsρ that can be
employed in canonization. One important consideration is that
the truth table does not satisfy the condition of Equation 2,
and therefore it is not a good representation for use in Boolean
matching algorithms. Algorithms such as those in [7], [11]
could, on the other hand, effectively employ the cofactor
transformation to more aggressively prune the permutations
tree.

We now consider the addition of a weightwm ∈ N+ to each
addendum in Equation 1 to define another transformationρcw:

(f ◦ ρcw)(X) =

2n−|I|−1
∑

m=0

wmfI(m) (3)

The selection of values ofwm in such a way thatρ′ =
ρcw satisfies Theorem 3.1 and Equation 2, can be obtained by
settingwm = aH(m), whereH(m) is the Hamming weight
of the binary expansion ofm (referred to the cofactorfI ),
and a ∈ N is chosen so that in any(f ◦ ρcw)(X) sum, the
binary representations of the partial sums of operands with
equal Hamming weights do not overlap (i.e., the bitwiseAND

of their binary representations is0).
This condition imposes that two values ofρcw◦f with equal

order be computed using the same set of weights applied to
different values offI(m).

Let us consider the computation of a generic coefficient
(f ◦ ρcw)(X), and focus on the partial sum of terms with

equal order:

(f ◦ ρcw)(X) =

n
∑

k=|I|

Sk (4)

where
Sk =

∑

0≤j<2n−|I|

H(j)=k

wkfI(j) (5)

Since the binary representation of eachSk does not overlap
with others, the computation of Equation 4 does not involve
any carry bit, which means that each addendum brings an
independent contribution to the sum, and there is no loss of
information in substituting{Sk | ∀k ∈ [|I|, n] } with their sum
(f ◦ ρcw)(X).

Thus, a violation of Equation 2 cannot depend on a carry bit
that modifies a termSk. Such violation must then correspond
to a partial sumSk that is different for(f ◦ ρc)(X) and (f ◦
ρc)(Y ) but not for (f ◦ ρcw)(X) and (f ◦ ρcw)(Y ).

Let us now consider the computation of the partial sumSk

shown in Equation 5. SincefI(j) terms of equal order are
multiplied by the same weightwk, a different number of non-
zero fI(j) terms necessarily leads to a different value of the
Sk, thus avoiding any loss of information. We can conclude
that Equation 2 holds under the hypotheses.

However, a good representation must not only be able
to effectively distinguish variable orders in the canonization
algorithm – it must also be possible to efficiently compute its
coefficients. We found thatwm = 2H(m) leads to an efficient
implementation while introducing only limited aliasing, thus
ensuring a good performance improvement over the cofactor
representation, as will be shown in Section IV. We call this
f ◦ρcw theshifted cofactorrepresentation off . We will show
in Section III-G how the shifted cofactor representation can
be computed efficiently.

The formal verification of the applicability of Theorem 3.1
to the shifted cofactor transformation can be performed more
easily if its definition is restated in matrix form. A careful
analysis of the definition of the shifted cofactor transformation
leads to the following relation with the cofactor matrix defined
in Section III-C:

Cwn = (Cn)
2

The proof proceeds by induction. The induction base is:

C1 = C2
1 = [1], C2 =

[

1 0
1 1

]

, C2
2 =

[

1 0
2 1

]

The induction step can be expressed as:

C2
n+1 =

[

Cn 0
Cn Cn

]2

=

[

C2
n 0

2C2
n C2

n

]

whereC2
n+1 is persymmetric and block-triangular. Recalling

that the eigenvalues of a triangular matrix can be read on
its main diagonal, we can infer thatC2

n+1 has all positive
eigenvalues ifC2

n has the same property. Since the eigenvalue
of C2

1 is unitary, so are all the eigenvalues ofC2
n, for all n, and

thereforeCwn is definite positive, fulfilling all the conditions
of Theorem 3.1.
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TABLE I

TRUTH TABLE, COFACTOR AND SHIFTED COFACTOR REPRESENTATION OF

THE 2:1 MULTIPLEXER f(x2, x1, x0) = x0x2 + x1x2

x2x1x0 fb f ◦ ρc f ◦ ρcw

0 0 0 0 4 18
0 0 1 1 3 7
0 1 0 0 3 8
0 1 1 1 2 3
1 0 0 0 2 6
1 0 1 0 1 2
1 1 0 1 2 3
1 1 1 1 1 1

F. Canonization Example

In this section we exemplify the computation of some of
the canonical forms previously presented. In particular, we
derive the canonical representation of a three input multiplexer
with respect to truth table, cofactor and shifted cofactor
representation.

Let us consider a multiplexer with two data inputsx0 and
x1 and one control inputx2, f(x2, x1, x0) = x0x2 + x1x2.

1) Truth Table:The truth table off is shown in columnf b

of Table I. Algorithm 4, applied tof , first considers the values
of the function for the input configurations(001), (010), (100)
(associated with variablesx0, x1, x2, respectively). Since the
value associated withx0 is 1, while those associated with
x1 and x2 are 0, the first-order coefficients suffice to draw
a partial ordering:{x0}, {x1, x2}, that isx0 will be the first
variable in the canonical permutation. To orderx1 andx2, it is
necessary to examine the second-order values associated with
x0x1 andx0x2: f(011) = 1 andf(101) = 0. Since the value
associated withx0 x1 is greater than that ofx0 x2, x1 preceeds
x2 in the canonical ordering (that is the permutation of input
variables corresponding to the canonical form). The ordering
is thenx0, x1, x2. In total, five values of the function have
been employed to identify the canonical ordering.

2) Cofactors: Table I reports the values of the cofactors
and shifted cofactors for the 2:1 multiplexer, sorted in dyadic
binary order. E.g., the entry relative to the001 configuration
reports the cardinality of the onset of cofactorfx0

. Conven-
tionally, the first entry,000, corresponds to the cardinality of
the function onset,|f |.

First order cofactors associated with the input variables are:
|fx0
| = 3, |fx1

| = 3, |fx2
| = 2. Then,x2 is the last variable

and it is necessary to compute the second-order coefficients
to discriminate betweenx0 and x1. Since |fx0x2

| = 1,
|fx1x2

| = 2, x0 comes afterx1, and the canonical ordering
is: x1, x0, x2. Five coefficients are employed to identify the
canonical ordering.

3) Shifted Cofactors:First order shifted cofactors associ-
ated with the input variables are:cx0

= 7, cx1
= 8, cx2

= 6,
as shown in Table I. For example, forcx0

, we have thatX =
{x0}, fX = x1+x2, so the minterms in its onset correspond to
the variable assignments in the original function(001), (011)
and (111). Therefore,cx0

= 2(1−1) + 2(2−1) + 2(3−1) = 7.
The variable ordering of the canonical representation is then
established by exploiting only the three first-order coefficients.

G. Efficient Computation of the Shifted Cofactor Transforma-
tion

In this Section, we tackle the issue of efficiently implement-
ing the computation of the shifted cofactor transformation,
when the Boolean functions are represented as BDDs, which
is the most common case in modern synthesis tools.

Given a ROBDD for a Boolean functionf rooted in node
N , with a specified variable orderingv = (v1, . . . , vn), the
cardinality of the onset off can be efficiently computed
through the following induction rule.

In the base case, the Boolean function consists of a single
node. Then, the cardinality of its onset| f |=| N |, is | N |= 1
if N is the constant one node,| N |= 0 if N is the constant
zero node. The induction step is

| N |=| NT | 2|v(NT )−v(N)|−1+ | NE | 2|v(NE)−v(N)|−1

whereNT andNE are the roots of thethenandelseparts of
the BDD rooted inN , and | v(N1)− v(N2) | is the distance
between the two variables tested inN1 andN2, v(N1) and
v(N2), in V .

The terms2|v(NT )−v(N)|−1 and 2|v(NE)−v(N)|−1 take into
account the fact that some variables may not appear in one of
the branches of the tree, so thatv(NE) and v(NT ) may not
be adjacent tov(N) in the input variable orderingv.

1

2

1

2
1

0

x1

x2

x0 N

NT

E

N

Fig. 1. ROBDD for the 2:1 multiplexer. Arcs are labeled with weights
2|v(N1)−v(N2)|−1, indicating the missing nodes for variables that are indif-
ferent for a certain subtree.

For example, let us consider the computation of| f |, where
f is the 2:1 multiplexer in Figure 1. Each arc(N2, N1) is
labeled with the value of2|v(N1)−v(N2)|−1. The value of| f |
is computed as| N |=| NT | +2 | NE |= 2 + 2 · 1 = 4.

This induction rule, which is efficiently implemented in the
CUDD package [16], can be extended to cover the shifted
cofactor computation.

In the shifted cofactor transformation, the onset elements
of the function are weighted by the Hamming weight of the
corresponding input configuration, so in the BDD represen-
tation this computation rule can be translated by differently
weighting thethen and elsesubtrees. Specifically, athen arc
between two nodes corresponding to adjacent variables has its
weight doubled, while theelsearc has a weight of one.
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In the proof of the modified induction rule, the base case is
unchanged,| N |= 1 if N is the constant one node,| N |= 0
if N is the constant zero node. The induction step is

| N |= 2 | NT | 3|v(NT )−v(N)|−1+ | NE | 3|v(NE)−v(N)|−1

The new weight3|v(N1)−v(N2)|−1 is given by the sum of
the weights of a set of| v(N1)−v(N2) | variables that do not
affect the considered subtree:
|v(N1)−v(N2)|−1

∑

k=0

(

|v(N1)− v(N2)| − 1

k

)

2k = 3|v(N1)−v(N2)|−1

1

6

2

3
2

0

x1

x2

x0 N

NT

E

N

Fig. 2. ROBDD for the 2:1 multiplexer. Arcs are labeled with quantities that
take into account the weights used in the computation of the shifted cofactor
transformation.

The computation of the zero-order shifted cofactor is shown
for the same 2:1 multiplexer example in Figure 2. The value
f ◦ ρcw(000) is computed as| N |= 2 | NT | +3 | NE |=
2 · 6 + 3 · 2 = 18.

IV. EXPERIMENTAL RESULTS

In order to provide experimental evidence supporting the
effectiveness of theshifted cofactorrepresentation introduced
in Section III, we have reimplemented the algorithm proposed
in [1], and we then applied our representation within the same
canonical form computation framework. The canonical form
computation framework usesbinary decision diagrams(BDD)
as the most efficient representation format for boolean function
manipulation, and relies on theCUDD BDD manipulation
package [16].

The following results have been obtained using a Pentium4
processor at 3.20 GHz.

Figure 3 shows the overall results of our approach by
comparing the average execution times for the algorithm
using the cofactor representation [1] and theshifted cofactor
representation, over a large set of randomly generated Boolean
functions ranging from 3 to 24 input variables The shifted
cofactors outperform the previous approach by five times.

To better understand the reasons of this success, let us
consider the information provided by Figures 4 and 5. The
former plots the number of solutions (|L|) produced by Algo-
rithm 4 – and gives therefore a measure of the effectiveness of
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Fig. 3. Compared execution times as a function of the input set size
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Fig. 4. Number of solutions produced by Algorithm 4 as a function of the
number of input variables

the two methods in identifying the canonizing transformation.
The latter measures the usage of second order coefficients
by Algorithm 4. Since both cofactor and shifted cofactor
computations can be performed very efficiently on demand,
the ability to reduce the number of cofactors used positively
affects the overall performance.

This is not the case for Walsh coefficients, for example,
because in that case the on-demand computation is slower
than the Fast Walsh Transform methods that compute all the
coefficients at once. This is the main reason why Walsh coef-
ficients cannot be effectively employed to solve the Boolean
matching problem. Indeed, the number of coefficients needed
to compute the canonical form using the Walsh transform is
not significantly different from that of the cofactor transform.

Note that, for both metrics considered in Figure 4 and
Figure 5, the shifted cofactors technique outperforms the
cofactor method by more than one order of magnitude.

In order to provide a better comparison with the previous
work in [1], Table II also reports in the results for multiplexer
functions, which were indicated as worst case within the
test set of [1]. We report time metrics for multiplexers with
3, 4 and 5 selectors (11, 20 and 37 total input variables,
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TABLE II

COMPARISON OF EXECUTION TIMES ON MULTIPLEXERBOOLEAN

FUNCTIONS (TIMES IN MICROSECONDS)

Selectors Cofactors Shifted Cofactors

3 3.1 µs 3.1 µs

4 47.0 µs 18.8 µs

5 1337.7µs 573.7µs
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Fig. 5. Number of second order cofactors used by Algorithm 4 asa function
of the number of input variables

respectively). All input multiplexers are represented using the
variable ordering that ensures minimal BDDs. It can be seen
that the shifted cofactors outperform the cofactors in the case
of 20 and 37 input variables multiplexers, consistently with
the results of the random functions test.

V. CONCLUDING REMARKS

In this paper, we have proposed a unified approach to
boolean matching under P-equivalence based on canonical
forms, building over existing spectral and cofactor-based
techniques. From the theoretical insights obtained from the
unification of previous approaches, we derived a new canonical
form that significantly reduces computation times with respect
to the state of the art.

Future directions include the extension of the family of
linear transformations, the inclusion of NPN-canonical forms
within the formal framework, and the extension to the problem
of Boolean matching withdon’t careconditions.
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