A Transform-Parametric Approach
to Boolean Matching

Giovanni Agostd, Francesco BruschiGerardo Pelo$j Donatella Sciutb
7 Politecnico di Milano, Dipartimento di Elettronica e Infoazione
Piazza Leonardo da Vinci 32 — 20133 Milano, Italy
Email: {agosta,bruschi,sciuy@elet.polimi.it
T Universita degli Studi di Bergamo

Dipartimento di Ingegneria dell’'Informazione e Metodi Matatici

Viale Marconi 5 — 20044 Dalmine (BG), Italy

Email: gerardo.pelosi@unibg.it

Abstract— In this paper, we face the problem of P-equivalence The present work does not consider the N-equivalence
Boolean matching. We outline a formal framework that unifies problem, since efficient canonical form-based solutiomgHis
some of the spectral and canonical form-based approaches tha problem are already stated in [5], and can be integrated with

problem. P val ical f 7
As a first major contribution, we show how these approaches -equivalence canonical forms [7].

are particular cases of a single generic algorithm, parametric with Ve point out that the previous approaches are particular
respect to a given linear transformation of the input function. ~ cases of a more general framework, parametric with respect

As a second major contribution, we identify a linear trans- to a linear function transformatiop. We give a formal
formation that can be used to significantly speed up Boolean description of a set of linear transformatiopsthat can be

matching with respect to the state of the art. Experimental resits full | d in Bool tchi M
show that, on average, our approach is five times faster than successiully employed In Boolean maiching. Moreover, we

the main competitor on 20-variables input functions, and scales identify a particularp that yields better performance than
better, allowing to match even larger components. the previous approaches, by combining the ability to idgnti

the canonical form using only the values of the transformed
function in few points with an efficient, on-demand algamith
. . _ ho individually compute those values.

In the synthesis of Boolean functions using a target tech- o comparison with the existing state of the art in the field
nology,.a .probler_n known aiz_achnology mappingone of .has been carried out implementing our algorithms by means
the main issues is to dgtermme Whethgr a Ilbrary contaigs v« well knownCUDD Binary Decision Diagrams (BDD)

a compone_nt that can implement a gen function. _Ea?nanipulation package [16], since BDDs are the most flexible
component m_1p|ements a set of fu_nct|on_s that are all eqeital representation format for Boolean functions, and are widel
when permut_mg or negating Fhe mput lines. adopted both in the industry and in research works. For an

To determine wh_ethg ragen library cefl, represgn_ted accurate and fair comparison, we reimplemented the most
by & Boolean functioryc, can |mplement a functhtf, It is performant previous approach [1], and performed tests ¢im bo
therefore necessary to determine whether there is a perm dom function sets and specific functions that are coreide
tion 7 of the input variables of~ such thatfc om = f. This worst cases.
prpblem IS knovv_n as P-eqUIvaIenBeoIeaq matchmgf;4]_, and The paper is organized as follows. In Section Il we address
itis a key ste_p in any technology mapping Symhes's ProC&R% state of the art in the field. In Section Ill we introduce
because the time needed to match a function with @ COMPONgNL | ified framework for the computation of some canonical

of a library significantly impacts on the synthesis time. forms, as well as a new transformation that can be applied to

Over the pagt ?.’0 years, many me.thods and algorithms h%/c?olean functions to speed up the computation of the canoni-
been defined n literature to face this problem [4]. Neverth%al form. In Section IV we provide experimental evidence tha
less, new effective approaches have recently been dewtlo ows how our technique improves over the state of the art in

and have gained the interest of the scientific and industr{% ms of performance. Finally, we draw some conclusions and
community, proving that the problem is still challenging. outline future works iﬁ Sectio,n v

In this paper, we propose a novel approach that tries to
unify some of the most effective Boolean matching approsiche Il. RELATED WORKS
based oncanonical forms ranging from those based on . .
: . i . Th I f Bool h h h
spectral function analysis [10], defined and developed @ th e problem of Boolean matching has been the subject

. . of h ks. [4 i f th i
'70s, to the most recent, based on functions representla\plon0 many research works. [4] proyldes a survey of the main
approaches. There are three main classes of matching algo-
means of cofactors [1].

rithms: spectral methods, signature-based methods, amhea
This paper is an extended version of [2] ical form-based methods.

I. INTRODUCTION

Spectral methods [3], [8], [14] exploit the fact that NPNf we considerr as an operator that can be applied to a
equivalence in the time domain translates to equivalendemnfunction, we can denote the functighwith permutated inputs
coefficient permutations in the sequence domain of the Walsfith the expressiotfor. f’ is then P-equivalent (at matche$
Transform. These methods suffer from exponential complexito f” if and only if there exists & € P such thatf’or = f”.
of the average case, since the cost of computing a Fast Walstbne of the classes of approaches for the solution of the
Transform is polynomial in the size of the input set (the lagfoolean matching problem relies on the use cahonical
column of the truth table), which is of siz" with respect to representation®f functions. A canonical form is obtained by
the number of input variables. Little optimization is pddsj the application of a transformatiofi that maps any Boolean
except parallelizing the transformation algorithm, sirelé function f to a C(f) in such a way that any other function
coefficients are computed at the same time, even when a fgwP-equivalent tof has the same canonical for@(f): f' ~
of them could be used to detect non-equivalent functions. f < C(f’) = C(f). A canonical form for Boolean functions

Signature-based methods use a compact representatioranf be naturally introduced by representing functionsrasgst
the Boolean functions. The signature is usually not a cotaplecomposed of their ordered output values. The lexicographic
representation of the function, but it is supposed to ineludomparison of such strings induces an ordering and alloas th
sufficient information to allow non-equivalent functiorstie definition of the canonical form as the lexicographic maximu
detected. In [15], it is noted that signature-based methodbthe set of P-equivalent functions:
fail in detecting alias groups. A survey of signatures used i
Boolean matching can be found in [17]. C(f) = maz{f o}

Canonical form-based methods use functignghat map
any Boolean functionf to a C(f) such thatf’ ~ f « Itis straightforward thaC'(f) has the properties of a canonical
C(f") = C(f). [5] introduces a canonical form for N-representation of with respect to P-equivalence.
equivalence, and a semi-canonical form for P-equivalence Note that the lexicographical maximum can be defined for
More recent developments have led to canonical forms fall those function families that have a codomain on which
P-equivalence as well [1], [7], [11]. In this paper, we coman order relation is defined. Also, the above definitions can
pare our approach to the most performant of these previdig restated for the dual case of the lexicographical minimum
works [1]. In the rest of the paper, we will consider only the case of

Other recent approaches such as [12] focus on symmégyicographical maximum.
detection. These works are orthogonal to our own, and mayA trivial way to identify the lexicographical maximum of
be usefully integrated with it. a P-equivalence class would be to apply all the possible per-

Finally, other approaches such as [6], [9] rely on a prenutations and to choose the maximal. However, this method
liminary exploration of the function space that allows thécurs in anO(n!) complexity, wheren is the number of input
precomputation of minterm positions. This informationtienn variables. An efficient algorithm to find the lexicographica
saved into huge lookup tables. [6] improves the approaamaximum of a given function is presented in [1]. This algo-
by pruning the search tree, using signatures (including firithm still has to face the issue of dealing with functionatth
order cofactors) and symmetry checks. These approachestaree a codomain of small cardinality((1}), and therefore
slower than canonical form based methods [1], except for vetause frequent collisions when trying to discriminate afales.
small numbers of input variables, but their main drawbadk fact, the more a function exhibits different output valpe
is the large memory requirements, which effectively linté i the easier it is for the algorithm to assess a variable arderi
applicability to functions with up to a maximum of dozerand the ability to exhibit different output values depends o
variables [6], [9]. Canonical form-based approaches, @n tthe cardinality of the codomain.
other hand, scales well up to over twenty input variables. That is why in [1] the values of a Boolean functigrare not

directly used as the input of the algorithm. Instead, a bijec
IIl. P-EQUIVALENCE CANONICAL FORM linear transformation is first applied to the function. The

In this section, we introduce a unified approach to canonidahnsformation computes, for each eleménif the powerset
form-based boolean matching. First, we define a generalizefdthe set of input variable§x, _1,...,2z0}, the number
canonical form, and discuss the property of the functiomeep of minterms in the cofactor associated with that element,
sentation needed to compute it. Then, we describe the Variathat is |f;|. Of course, thecofactor transformationis not
ordering algorithm that will be used in the experiments. the only linear transformation that can be employed: it is

effective because it allows the application of the canditra
A. Generalized Lexicographic Canonical Form algorithm by comparing only a small number of values of the

The Boolean matching problem can be formally stated d#@nsformed function, and there is an efficient way to comput
follows: consider two Boolean functiong’ and f”, of n these values.
variables each. Consider now all the possible permutations
P of the input variables off’ (a variable permutation cang

be represented as a bijective function that maps an ordered
variable sequence onto itself): Algorithm 4 gives the picture of a generalized canoniz-

ing algorithm in a high-level pseudo-code. For the sake of
P= {7‘(‘ | (Tn—1,--.,%0) — (xzz(_nfl), cee J}W(O))}

Variable Ordering Algorithm

clarity, implementation-dependent optimization detdisg.,

BDD cache optimizations) are not reported. The algo- d,([):{ Dver 2" !fIEP(V)\V)
rithm takes as input a Boolean function of variables 0 if 1=10

fo(wp 1, Tp_o,..., 21, 70), represented by an ordered seThe inverse of the) relation can also be expressed as:
quenceW = (Wy, Wy, ...,Wan_y) of |W| = 2" co-

g - v :D—=PV)
efficients. The values of these coefficients depend on the , -)
representation chosen for the Boolean function. For im&tan (;,,) — { {0 <i < [logyn]|[m/2"]isodd} if m #0
the Boolean function may be represented by the last column 0 if m =0

of its truth table. Using the positional indexes i, it is possible to define an
The goal of the algorithm is to produce a listof candidate equivalence relation amid coefficients i#i as follows:

canonizing permutations of the input variables. The peamut ViieD. Wi W ool |l= .

tion in L corresponding to the lexicographical maximum (see o ’ ! _ 5 < (p_(l_) =] ?(J) |

line 19 in Algorithm 4) is selected as the one that generatééereW; andW; are a pair of coefficients il

the canonical form of the assigned functigh [1]. If more If Wi ~ W; we say thatiV; and W; have the same order

permutations lead to the canonical form, it is sufficient t& =| ©(¢) [=[¥(j) |-

identify any one canonizing permutation.

Algorithm 4: Generalized algorithm for the computation

of the canonizing permutation.

Input: V = {0,...,n — 1} as the set of input variables

indexes, ¢ = {vo, ..., Un-1});
W = (Wy,...,Wan_)as coefficients

corresponding to a-variate Boolean function.
Output: List of candidate canonizing permutatiors,

Data: Let W be the coefficients of-th order,
0<i<mn,inW.
1 begin
C—{v,/ R}
G «— Sorty1(C / =wn)
L {G}
foreachi € [0, |C|) do
foreach G € L do
if |g;| #1, g; € G then
L— L\ G
foreach C,, € g; do

© 00 N O g b~ WN

=
o

L —Lugm
/* ‘gi| = I,Vgi Eg/\VgEL*/
foreach G € L do
L— L\G
foreach g, € G : k > i do
Gy, — SOTtW(?i (gk/ :ng)
G — G\ gr UGk
L—LUg
19 return max(L)
20 end

e e e L e
0w N O g b~ W N

Gm — G\ g; U{Cn}Ug; \Cn

This way, we can partition the set of coefficiers into
a series of disjoint set§/’”...W". We denote the generic
elementiW* as the set of coefficients of ordér wherek ¢
[0, n] and| W* |= (}).

A total ordering relation< amid the coefficients iV is
naturally inferred from the ordering of the binanruples
identified with the elements @?(V') by thep and+ maps. In
each binary tuple an element is 1 if the corresponding veriab
in v is included in the selected set @ (1), 0 otherwise.
Thus, < defines the dyadic ordering of the coefficiemts In
the following, representations of the Boolean functifthare
assumed to be sorted accordingto

Now, let us introduce the notion cdfymmetry equivalence
relation £ on the set of input variables Given an ordered set
of coefficientsiV = (W, ..., Wan_;) representing the values
of a Boolean function, any two input variablesandv;, with
i,j € [0, n — 1] andi # j, are considere@quivalentif and
only if the sequence of coefficients values resulting afver t
exchange of the variablag andwv; is indistinguishable from
the original one.

This notion of symmetry equivalence is consistent with the
one adopted in [1], although other types of symmetries can
be defined. The validity of Algorithm 4 is orthogonal to the
problem of symmetry detection in the sense that different
assumptions about the notion of symmetry can reduce the
number of equivalence classes providing possibly a perfor-
mance improvement.

Givenk =| V / 5| as the number of cosets inferred by

the relationASJ, the set of input variables can be thought as
the disjoint union of the corresponding symmetric equinaée
classes:

k—1
V U Oj
j=0

Every coefficient composing the representation of the fU”ﬁ/hereCj ={vicv: 2 ¢;, 0<i<n}, 0<j<kbeing
tion can be uniquely associated to one element of the inputc ¢ the representative element of the generic equivalence

variables power-set. Let= {z,_1, z,—2,...,%1, 2o} be the (jass.
set of input variables antl = {0,1,..., n—1} be the setof Now, the application of a transpositian= (O
input variables indexes. GiveRt = {0, 1,..., 2" —1} as the o the input variables of the Boolean functigh corresponds

set of indexes corresponding to the positions of coeffisien, the operation of swapping all the pairs of coefficieFits
W, the following relationy) defines a bijective map betweeng g W; Vi, j with i < j such that:

the power-set oV, P(V), and the seiD: ' .
e(i) Ak, b} = @(i) Ak, h} A

¢ P(V)—D (keo(@) Nhep() Vv (kep() Ahep)

In general, a permutation can be decomposed into a funcof f°:

tional product of transpositions = 75 o 71 ... o 73, SO zamyzo | f°
the above correspondence can be naturally extended from 000 | O
transpositions to permutations. 001 1
Algorithm 4 classifies the set of input variables indexes 010 0
. S . . 011 0
V into a setC of ~-equivalence classes. Subsequently, it
. 100 0
collects the classes d that have the same first order co- 101 1
efficient values {’') into groupsg;; the set of these groups 110 1
is denoted agj. More specifically, the generic group = 111 0
{Ciy, Cipy..., C;,} € C/ =y includes all equivalence
classes such thaVy (., 1) = .- = Wy, })- The setG is The computation of the first and second order coefficients
then sorted according to values Bf!, making it an ordered assignsW' = {Wi, Wo, Wy} = {1,0,0} and W? =
sequence. {Ws, W5, Ws} = {0, 1, 1}, respectively. Then properr‘z-
Initially, there is a singleJ in L, possibly containing groups €quivalence classes (i.e., excluding the emptyljetre:
g; such that|g;| > 1. The canonizing method proceeds C ={Cy={0}, C, = {1}, Cy = {21}

examining the first groupy in this G.
The first collection of equivalence classes is computed by

. . S . .
If g0, is composed of a singke-equivalence class, i.eg = considering the first order coefficients’:

{C;,}, we consider such grougesolved which means that,
with respect to the final canonizing permutation, a position G ={g90={Co}, n ={C1, C2}}

for the corresponding input variables has been detected.)
P g 1np Sorting the variables with respect to the first order coeffits,

The second order coefficients, 12, with the algorithm is able to discover that, in the canonical per-
mutation, variabler, precedes variables, and ., because
9 9 Wy > Wy andW2:W4.
Wey ={ Wik € W= : VC;, € go, Since the first groug, = {Cy} is constituted by a single
Ci, Co(k), |o(k)| =|C;,| + 1} L-equivalence class, it is resolved, and the second order
coeﬁicientsWQQO = {W3, W5} can be used to try to solve
group g1 = {C1, Ca}. In our case,Ws < Ws, so within
will then be used to try and order the subsequent (possibly class C, can be sorted before clags;. The canonical
unresolvedl groups gy, k > 0, as shown in lines 1318 of permutation forf? is thereforer = (8;?)
Algorithm 4.

In next iterations of the external loop (line 9,...g;-1 C. Linear Transformations compatible with the Canonizatio
are considered, all such thgt| = 1. Thus, remaining unre- Algorithm

solved groups may be ordered using second order coefficientsy, i ionie derived from the cofactor transformation

On the other hand, when the considered groups com- employed in [1] are not the only possible choice: other works
posed of more than oné—equivalence clasg’;,, the algo- have employed, e.g., the Walsh coefficients instead of the co
rithm must exhaustively try to splig; into a resolved group factors [3]. To minimize the canonization time, it is impeont
containing a singleC;,, and a second, possibly unresolvedo be able to select the most performant transformationhito t
group g;\{C;, }. Lines 6:11 of Algorithm 4 show that new end, we first define a set of compatible linear transformation
possible solutiong/ are added td. in this case. that can be employed in conjunction with Algorithm 4. Then,
we explore the set of compatible linear transformations and
identify a specific transformation that is strictly more pful
{aan the cofactor form employed in [1].

The algorithm will then try to resolve;\ {C;} using the
second order coefficientBVQC,_}, as it did when the group

was composed by a single si/mmetry equivalence class (li - - S .
Consider a generic multivariate Boolean function

13:18). b X _ :
f?(xn_1,...,20) and a linear operatgs with its associated
tr

From the multiple solutions generated, we choose the singleyirix R Let us consider all thosg that are invertible and
canonical form using higher order coefficients (line 19nc® o mmutative with respect to any permutatiorof the input

these are complete solutions, we simply compare higherordgiaples of f*. The idea is that, in general, it can be easier

coe_ff|C|ents_|n dyad|_c order, which amoun_ts to selecting thg maximum £ o p than f°. To do so, we must show that

lexicographical maximum among the solutions. finding the lexicographical maximum of’ o p leads to a
Example 3.1:Let us consider the following Boolean func-canonical formC(f?), i.e. a uniquely identified representative

tion: f* = (o ® x1) (w071 + z2), represented by the last col-element of the P-equivalence class f&f

umn of the associated truth tabfé = (0, 1, 0, 0, 0, 1, 1, 0). To this end, for some class of transformatignswe need

For this function,V = {0, 1,2}, n = |V| = 3, P(V) = to prove that the following equality holds:

{0, {0}, {1}, {0,1}, {2}, {02}, {1,2}, V}.

. . o . flopom=flomop VreP
This can be easily seen by considering the entire truth table

Definition 3.1: A dyadic transposition matriX is a trans- The most popular transformations used in canonical form
position matrix such that its application to the vector dixes Boolean matching are the Walsh and the cofactor transfor-
assumed by a Boolean function is equivalent to the apptinatimations. The Walsh transform [3] is defined by means of
of a transpositionr to the input variables of the same functionthe Hadamard matrix. The coefficients of the cofactor rep-

Given any Boolean function, sketched by its truth tableesentation [1], on the other hand, are computed as the onset
with the minterms in the usual dyadic order, if we transposmrdinalities of the cofactors of the Boolean function.
variablesv; andwv;, the last column of the truth table changes The Hadamard matrix{,, of rankn = 2% L € Nt can be

according to the right product by & matrix. expressed as:

By construction: keeps into account the sequential dyadic Hy =[1]
ordering of the truth table. As a consequericés a bisymmet-
ric permutation matrix, because each of its columns costain Hy, = [Hy Hn]
a single one and globally the following equality chain holds Hn —Hn

Y =T = %~! = J%J, whereJ is the exchange matrix ~We observe that the computation of the cofactor onset sizes

(J? =1). |fr], where I ranges in the power-set of the set of input
Theorem 3.1:Consider a Boolean functiofi® represented variables, can be performed by means of a maftixdefined

as the vector of its values in the dyadic order of its domaét. Lmuch like the Hadamard matrix:

R be the matrix associated with a linear transformatiarf the

Boolean functionf?, andX be a dyadic transposition matrix. Cr=[1]

A sufficient condition for the equalit),beRE = beER to C, O

hold is that R is definite positiveand either symmetric or Con = { c, C, }

persymmetric.

Proof: Since the matrixC,, has all the eigenvalues equal 19

Theorem 3.1 can be applied. Thus, we can conclude that
RY = beER o RY =YR the cofactor representation is suitable for canonical form
computation.

As a major result of this work Theorem 3.1 defines an entire
class of transformations that can be employed in canonical
RY = JRTJJ2J = JRT®J form Boolean matching using the same approach as that used
with the cofactor representation.

Note that in the case of the Hadamard matrix, we cannot di-

T

f

If R is persymmetric, thetlR = JRTJ. Let us consider the
following derivation:

YR=JSJJRTJ =JER"J

RY =SRe JRTYSJ = J2RTJ & RTY — 2 RT rectly apply Theorem 3.1. However, the Walsh transfornmatio
)) is actually obtained by a Walsh matrix, which is the Hadamard
Therefore,RY = YR is equivalent to: matrix with its lines reordered by applying bit reversal and
(R+ RT)Y = S(R + RT) Gray code sequential ordering [3]. Indeed, the resultin¢gsiva

o _ _ . matrix W is symmetric, andiW? is diagonal (specifically,
where R+ R" is bisymmetric by construction. So, in the resyi’2 — 1), and we can prove that the Walsh matrix commutes
of the proof, we will assume thak is a symmetric matrix, with dyadic trasponsition matrices.
without prejudice for the generality of our proof. Theorem 3.2:Let Wany9n, n > 1 be a Walsh matrix, and

Due to the well-known theorem of simultaneous diagonaf: pe a compatible dyadic transposition matrix. Then
ization [13], being the two matriceB and¥ both symmetric,

and R being definite positive (that is, its eigenvalues are all WY =%Xw

positive), there exists a common orthogonal diagonatimati ~ Proof: Proving thath’y = W is equivalent to proving
matrix Q (Q7 = Q~1), such tha” RQ = Ar andQTXQ = that (WX)(EW) = (EW)(WX). The following derivation
As. can be used to this end:

Then, since diagonal matrices always commute, the follow-

: " SWWE=YnIYX=nl =WW =WEXW
ing equalities hold:

B T T T since¥? = I. []
RY = QARQ" QAsQ" = QArAsQ" = The statement of Corollary 3.1 holds for the Walsh matrix
= QAsARQT = QAsQTQARQT = 2R as well, proving that it commutes with generic dyadic permu-

tation matrices. Theorem 3.1 and Theorem 3.2 define two sets
Corollary 3.1 Let 3 b . . dof acceptable linear transformations compatible with tee-g
_ Corollary 3.1: Let € a permutation matrix COMmeSpoNCy 4 jizaq variable ordering algorithm described in SeclibB.
ing to the subsequent application of several dyadic trasispo
tionsY' = X1-3,...3,,. Then, a linear transformation matrix o .
R andX commute. D. Generalization to Alternative Approaches

Proof: In this Section, we survey the approaches to the exploration

f the permutations tree presented in [7], [11]. We show
Y =R(%...8m) =S1R...Sn = (31...5,) R=%R 2 ; SNOW

R R (% m) =R B = (3 m) R R that, when the same representation of Boolean functions is
m employed, such algorithms bring to the same canonical forms

as Algorithm 4, and can benefit from representations thatvall that of f o’ corresponds to a later output value. The minterm
performace improvements in that algorithm. in ¢(for'") is lexicographically smaller than the corresponding

In [7] the authors define a canonical form based uponame inc(fon’), as the output values are considered in dyadic
cost function associated with the onset representation omler. Thusc(f o 7”) < ¢(f o «’) and ' does not generate
function. Given am-variate Boolean functiorf, represented the canonical form of [7].
by its £ minterms M = {my,...m;_1}, the canonical form To give a better intuition of the reasoning, let us introduce
is constructed by minimizing a cost function defined as thhae following example.
integer number corresponding to the classical binary éngod Example 3.2:Consider the Boolean functiofi® = (z¢ @
of the string obtained by juxtaposing the minterms resglting,)(zZ; + x2) from Example 3.1 and its minterm represen-
from a permutation of the input variables. The authors,rafteation:
defining the canonical form, provide an effective branch and M = {my,ms,mg} = {001,101, 110}
bound procedure to compute it.

However, it is possible to show that the canonical forrAccording to the algorithm in [7], we first choose;, without
defined in [7] is the same as the one produced by Algorithmafly variable permutation (it is already minimal). However,
when applied to a function described by means of its trute just learnt thatz, will not be permuted at all, as the
table. choice of m; implies a partition of the minterms in two

The cost function is affected by both the juxtaposition ordéubsets, and no permutations will happen between variables
of the minterms and the permutation of variables. Howevef different subsets, as such a permutation would reptace
given a permutation of the input variables, there is a singhgth a different minterm of higher cost. The rightmost sutbse
juxtaposition order of the minterms that minimizes the cosf m1 only containsz,, so that its position is fixed in the
function. It is immediate to see that the minimizing seqeen¢anonizing permutation. Then, we consideg, and replace
of minterms is the increasing lexicographical order of fiore it with ms3, i.e. we permuter, andx;. This has no effect on
output values. An input variables permutation, on the oth#te other minterms — the algorithm guarantees it will have no
hand, changes the onset elements. effect on minterms already sorted, ang; has the same bits

Let us consider the truth table gf where the rows are in for z» andz;.
dyadic order. For a 3-variate function, the truth table isegi Thus, the canonicizing permutation is = (8;?) just as
by the sequencef(000), f(001), f(010), f(011), f(100), obtained using Algorithm 4.

f(101), f(110), f(111). Conversely, the same reasoning can be applied to the

The generalized canonical form computation defined kwo algorithms when a different representation, e.g., the o
Algorithm 4, applied tof, lexicographically maximizes the obtained through the cofactor transformation, is used.hi® t
string of function outputs. Intuitively, thishifts the 1s of end, it is sufficient to replace lexicographic ordering oings
the Boolean function towards the minterms that have a lowen the alphabef0, 1} with a total ordering relation on the set
contribution to the cost function of [7]. Thus, it reasoreblof humerical coefficients.
that the two operations (lexicographical maximization aosit A previous approach using a similar exploration of the
minimization) lead to the same result. permutations tree is reported in [11]. In this case, the ciab

For a more formal proof, consider a functignrepresented form is explicitly defined as the lexicographic maximum of
by its onsetM = {my, ...mj_1}. Its minimized cost function the bit strings representing the truth table. The canogizin
is obtained by juxtaposing the minterms starting from thx& le permutation is constructed by exploring the permutatioes t
cographically smallest, in ascending order. Any other saga and pruning it when a lexicographic non-maximum prefix is
would correspond to a greater cost. found.

Let ¢(f o 7’) be the cost function associated with the An important conclusion is that a different representation
minimizing permutationt’ of the input variables accordingthan the truth table could also be applied to the algorithms
to [7]. proposed in [7], [11]. The truth table is not especially edfit:

Let us now consider the lexicographical maximyhe =’/ intuitively, if at a given depth the permutation tree hasrbee
of function f obtained from Algorithm 4, along with the pruned so that all the prefixes of surviving branches arelequa
canonicizing permutation”’. We want to show thayf o 7/ then moving to the next level will only allow to find two sets
and f o 7" are the same. of subtrees with different prefixes.

Assumef on’ # fon’” and consider the first output value We will show in the following section how to obtain efficient
for which f o’ and f o n” differ. If this value isl for fon’ representations, and measure their effectiveness atingoline
ando for forn”, thenn” is not the permutation that generatesost of computing the canonizing permutation.
the canonical form according to Algorithm 4 — singe> 7/
is lexicographically greater. On the other hand, if the gaki
0 for fox’ and1 for f ox”, thenw’ is not the permutation
that generates the canonical form according to [7]. Since weGiven the definition of a family of acceptable linear trans-
are considering the first difference betwegnr’ and f o/, formations, we now define one specific transformation that
there is a common prefix to their cost functiarig o 7’) and allows us to achieve better performance in computing the
c(f o). The first minterm off o7’ after the common prefix canonical form than the previous works, thleifted cofactor
corresponds to the first difference in the output values)evhirepresentation.

E. The Shifted Cofactor Transformation

We start from the cofactor representation, which provestjual order:
very effective [1]. As shown previously, the canonical form — X
computation algorithm works better if the representatién o (f 0 pew)(X) = Z S)
the functionf o p has a smaller number of equal values. k=|I|

Given a functionf(z,—_1,...,x0) and an assigment to itswhere
variablesX = (Z,,_1,...,%0), Tk € {Q, 1},. the cqrresponding Sk — Z wi f1(5) (5)
element of the cofactor representation is obtained aswsllo 0<j<an—I1|
Consider the sef of input variables that are assigned a value CH(j)=k
of 1in X, I ={x € {zn_1,...,70}|Tx = 1}, then summing)))
all the output values of the cofactor gf with respect tof, ~ Since the binary representation of ea_ﬁ:’hdoes not overlap
fr: with others, the computation of Equation 4 does not involve

“11_y any carry bit, which means that each addendum brings an
(f o pe)(Z fi(m) independent contribution to the sum, and there is no loss of
information in substituting S* | Vk € [|I|, n] } with their sum
. — (o pew)(X).
Note that the output values of; contribute to(f o p.)(X) Thus, a violation of Equation 2 cannot depend on a carry bit
with a value of0 or 1. that modifies a tern$*. Such violation must then correspond

Let us consider a second representation of funcfiofiop’ to a partial sums* that is different for(f o p.)(X) and (f o

that satisfies Theorem 3.1. If the condition p)(Y) but not for (f o pew)(X) and (f o pew)(Y).
Let us now consider the computation of the partial sifn
(For)(X) = (1o)V) = (fope)(X) = (for)(Y) (@) shown in Equation 5. Sincg;(j) terms of equal order are
holds for all pairs of assignment tupl&sandY” corresponding multiplied by the same weighty, a different number of non-
to sets of input variableg and J with the same cardinality Z€ro f;(j) terms necessarily leads to a different value of the
(/I| = |.J]), then computing the canonical form frogho p, S*, thus avoiding any loss of information. We can conclude
will take at least as many operations as frgm p’. that Equation 2 holds under the hypotheses.

The condition in Equation 2 is not needed for all pafs ~ However, a good representation must not only be able
andY such that|I| # |J|, because in that cadg o p')(X) to effectively distinguish variable orders in the canotioa
and(fop')(Y) are coefficients of different order, and thus ar@lgorithm — it must also be possible to efficiently compuse it
never compared in Algorithm 4. coefficients. We found thab,, = 27(™) |eads to an efficient

Thus, a transformatiop’ that satisfies Equation 2 has dmplementation while introducing only limited aliasindyuts
chance to improve canonization performance. Equation 2 a@suring a good performance improvement over the cofactor
Theorem 3.1 limit the space of transformatignshat can be representation, as will be shown in Section IV. We call this
employed in canonization. One important consideratiohas t ./ © pcw the shifted cofactorepresentation of. We will show
the truth table does not satisfy the condition of Equation #1 Section 1l-G how the shifted cofactor representatiom ca
and therefore it is not a good representation for use in Boolebe computed efficiently.
matching algorithms. Algorithms such as those in [7], [11] The formal verification of the applicability of Theorem 3.1
could, on the other hand, effectively employ the cofactd® the shifted cofactor transformation can be performedemor

transformation to more aggressive|y prune the permutﬁtioﬂasny if its definition is restated in matrix form. A careful
tree. analysis of the definition of the shifted cofactor transfation

We now consider the addition of a weight, € N* to each leads to the following relation with the cofactor matrix e
addendum in Equation 1 to define another transformatign in Section II-C:

Oy = (Cn)?
on—Hl_q
(f 0 pew)(X) = Z Wy f1(m) 3) The proof proceeds by induction. The induction base is:
m=0 -
2 110 2 |10
The selection of values ofv,, in such a way thap’ = C1 =0 =[1],Cy = { 1 1 G = [2 1 }
Pew Satisfies Theorem 3.1 and Equation 2, can be obtained by
setting w,, = a”(™, where H(m) is the Hamming weight The induction step can be expressed as:
of the binary expansion ofn (referred to the cofactoy;), 2 e
. y — 2 C, O c: 0
anda € N is chosen so that in anyf o p.,)(X) sum, the Cri1 c. =1 902 2

binary representations of the partial sums of operands with
equal Hamming weights do not overlap (i.e., the bitwise> where C2 , is persymmetric and block-triangular. Recalling
of their binary representations (8. that the eigenvalues of a triangular matrix can be read on
This condition imposes that two values@f, o f with equal its main diagonal, we can infer tha&t? , has all positive
order be computed using the same set of weights appliedeigenvalues i{C2 has the same property. Since the eigenvalue
different values off;(m). of C% is unitary, so are all the eigenvalues@f, for all n, and
Let us consider the computation of a generic coefficietttereforeC’ is definite positive, fulfilling all the conditions

(f o pew)(X), and focus on the partial sum of terms wittof Theorem 3.1.

TABLE |
TRUTH TABLE, COFACTOR AND SHIFTED COFACTOR REPRESENTATION OF
THE 2:1 MULTIPLEXER f(z2,%1,20) = ToT2 + T122

G. Efficient Computation of the Shifted Cofactor Transforma
tion

In this Section, we tackle the issue of efficiently implement
ing the computation of the shifted cofactor transformation

b
I]; ! o fol’g“” when the Boolean functions are represented as BDDs, which
001 | 1 3 7 is the most common case in modern synthesis tools.
oY 5 Given a ROBDD for a Boolean functiofi rooted in node
100 | 0 2 6 N, with a specified variable ordering = (vy,...,v,), the
101 | 0 1 2 cardinality of the onset off can be efficiently computed
N i through the following induction rule.

In the base case, the Boolean function consists of a single
node. Then, the cardinality of its ongef |=| N |,is| N |=1
if N is the constant one node/N |= 0 if N is the constant
F. Canonization Example zero node. The induction step is

In this section we exemplify the computation of some of | N |=| Nr | glv(Nz)=v(N)|=1 | Ng | 9lv(Ng)—v(N)|-1
the canonical forms previously presented. In particulae, w

derive the canonical representation of a three input mekéy where N and N are the roots of théhenandelseparts of
with respect to truth table, cofactor and shifted cofactehe BDD rooted inN, and| v(N;) — v(N-) | is the distance

representation. between the two variables tested &M and N», v(N;) and
Let us consider a multiplexer with two data inputg and v(N,), in V.
x1 and one control inpuks, f(z2,21,x0) = ToTz + T1%2. The terms2/v(N1)—v(N)[=1 gnd 2lv(Ne)—v(N)I-1 take into

1) Truth Table: The truth table off is shown in columnf® account the fact that some variables may not appear in one of
of Table I. Algorithm 4, applied t¢f, first considers the valuesthe branches of the tree, so thgtVy) andv(Nr) may not
of the function for the input configuratior{801), (010), (100) be adjacent ta(N) in the input variable ordering.
(associated with variables,, x1, x2, respectively). Since the
value associated withy, is 1, while those associated with
x1 and zp are 0, the first-order coefficients suffice to draw)
a partial ordering{xo}, {z1, x2}, that isz will be the first
variable in the canonical permutation. To ordgrandz,, it is
necessary to examine the second-order values associdted wi X
xox1 andzoze: f(011) =1 and f(101) = 0. Since the value
associated with:g z; is greater than that afy x5, 21 preceeds
xo in the canonical ordering (that is the permutation of input
variables corresponding to the canonical form). The ongderi Xy
is thenzg, x1, x2. In total, five values of the function have
been employed to identify the canonical ordering. @~ --------
2) Cofactors: Table | reports the values of the cofactors
and shifted cofactors for the 2:1 multiplexer, sorted indiga 1 0
binary order. E.g., the entry relative to th81 configuration
reports the cardinality of the onset of cofactfyr,. Conven- _ o
tionally, the first entry,000, corresponds to the cardinality of5;%x7) (vt {g&iég‘finé:}hg"r‘r'ﬁfs'ﬁ‘xge; Jyes are lapeled withighes
the function onsetlf|. ferent for a certain subtree.
First order cofactors associated with the input variabtes a
|fzol = 3, |fz,] = 3, |fz,| = 2. Then, x4 is the last variable ~ For example, let us consider the computation ¢f|, where
and it is necessary to compute the second-order coefficiefitss the 2:1 multiplexer in Figure 1. Each a(éVs, Ny) is
to discriminate betweenr, and z;. Since |f.,.,| = 1, labeled with the value o!"(¥)=v(N2)I=1 The value of| f |
|for2.] = 2, o comes afterry, and the canonical orderingis computed a$ N |=| Ny | +2 | Ng |[=2+2-1=4.
is: z1,x0, 2. Five coefficients are employed to identify the This induction rule, which is efficiently implemented in the

canonical ordering. CUDD package [16], can be extended to cover the shifted
3) Shifted Cofactors:First order shifted cofactors associ-cofactor computation.

ated with the input variables are;, =7, ¢,, =8, ¢z, =6, In the shifted cofactor transformation, the onset elements

as shown in Table I. For example, foy,, we have thatY = of the function are weighted by the Hamming weight of the

{zo}, fx = x1+73, so the minterms in its onset correspond toorresponding input configuration, so in the BDD represen-
the variable assignments in the original functi®01), (011) tation this computation rule can be translated by diffdyent
and (111). Therefore,c,, = 20~V 4+ 22=1) 1 2G-1) — 7 weighting thethen and else subtrees. Specifically, then arc
The variable ordering of the canonical representation & thbetween two nodes corresponding to adjacent variablegsas i
established by exploiting only the three first-order cogffits. weight doubled, while thelsearc has a weight of one.

In the proof of the modified induction rule, the base case is Aogolsh & Pedram ——
unchanged| N |= 1 if N is the constant one nodeN |= 0 r]
if N is the constant zero node. The induction step is

120 |

|N|=2|Nr| glo(Nr)—v(N)|=1 | Ng | glv(Nm)—v(N)[-1

100
The new weight3l?(M)—v(N2)I-1 i given by the sum of

the weights of a set dfv(N;) —v(Nz) | variables that do not

affect the considered subtree:

[v(N1)—v(N2)|—1

80 -

60

Execution time (microseconds)

<U(N1) —v(Ng)| — 1) ok — glu(N1)—v(Na)|-1 wl
k

k=0
20

L
5 25

Number of input variables

Fig. 3. Compared execution times as a function of the inputiget s

1000

Abdollahi & Pedram ——
Shifted Cofactors ---x;--

100 |

10

Fig. 2. ROBDD for the 2:1 multiplexer. Arcs are labeled witheqtities that
take into account the weights used in the computation of tifeedrcofactor

Average number of solutions after using 2nd order cofactors

transformation.
P VSRS Koo ooy xemmmmm S BN X H-mmmm) Komee x
The computation of the zero-order shifted cofactor is shown ° 10 Numberofmpmi”ames 20 %
for the Same, 2:1 multiplexer example in Figure 2. The Valq—%g. 4. Number of solutions produced by Algorithm 4 as a furctof the
f © pew(000) is computed a$ N |=2 | Ny | +3 | Ng |= number of input variables

2:-6+3-2 =18

IV. EXPERIMENTAL RESULTS the two methods in identifying the canonizing transformati

In order to provide experimental evidence supporting thene Iatte_r measures the usage of second or_der coefficients
effectiveness of thehifted cofactorepresentation introducedPy Algorithm 4. Since both cofactor and shifted cofactor
in Section IIl, we have reimplemented the algorithm propos&°mputations can be performed very efficiently on demand,
in [1], and we then applied our representation within theesarthe ability to reduce the number of cofactors used positivel
canonical form computation framework. The canonical forfects the overall performance.

Computation framework uség'nary decision d|agram$DD) This is not the case for Walsh coefficients, for example,

as the most efficient representation format for booleantfanc because in that case the on-demand computation is slower
manipulation, and relies on th€UDD BDD manipulation than the Fast Walsh Transform methods that compute all the

package [16]. coefficients at once. This is the main reason why Walsh coef-
The following results have been obtained using a Pentiurfigients cannot be effectively employed to solve the Boolean
processor at 3.20 GHz. matching problem. Indeed, the number of coefficients needed

Figure 3 shows the overall results of our approach B compute the canonical form using the Walsh transform is
Comparing the average execution times for the a|gor|thﬁpt Significantly different from that of the cofactor traosh.
using the cofactor representation [1] and sfefted cofactor =~ Note that, for both metrics considered in Figure 4 and
representationover a large set of randomly generated Booledrigure 5, the shifted cofactors technique outperforms the
functions ranging from 3 to 24 input variables The shiftedofactor method by more than one order of magnitude.
cofactors outperform the previous approach by five times. In order to provide a better comparison with the previous

To better understand the reasons of this success, letwwmk in [1], Table Il also reports in the results for multipér
consider the information provided by Figures 4 and 5. THanctions, which were indicated as worst case within the
former plots the number of solutiong() produced by Algo- test set of [1]. We report time metrics for multiplexers with
rithm 4 — and gives therefore a measure of the effectiveniess3p 4 and 5 selectors (11, 20 and 37 total input variables,

TABLE I
COMPARISON OF EXECUTION TIMES ON MULTIPLEXERBOOLEAN
FUNCTIONS(TIMES IN MICROSECONDY

Selectors| Cofactors | Shifted Cofactors
3 3.1 s 3.1 us
4 47.0 us 18.8 us
5 1337.7pus 573.7us

Abdollahi & Pedram ——
Shifted Cofactors ---x---
10000 4

1000 |

100 |

10

Average number of second order cofactors used

5 10 15 20 25
Number of input variables

Fig. 5. Number of second order cofactors used by Algorithm & asction
of the number of input variables

respectively). All input multiplexers are representechgsihe

variable ordering that ensures minimal BDDs. It can be seen
that the shifted cofactors outperform the cofactors in thsec

(5]

(el

(7]

8l

[9

—

(10]

(11]

(12]

[13]
(14]

(15]

(16]

of 20 and 37 input variables multiplexers, consistentlyhwit

the results of the random functions test.

V. CONCLUDING REMARKS

In this paper, we have proposed a unified approach to

boolean matching under P-equivalence based on canonical

forms, building over existing spectral and cofactor-based
techniques. From the theoretical insights obtained from th
unification of previous approaches, we derived a new caabnic

form that significantly reduces computation times with eztp

to the state of the art.

Future directions include the extension of the family of

linear transformations, the inclusion of NPN-canonicairfe

within the formal framework, and the extension to the proble

of Boolean matching witldon'’t care conditions.

REFERENCES

[1] Afshin Abdollahi and Massoud Pedram.

Symmetry detectiod an
boolean matching utilizing a signature-based canonicah fof boolean

functions. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions gn27(6):1128-1137, June 2008.
[2

Giovanni Agosta, Francesco Bruschi, Gerardo Pelosd Bonatella

Sciuto. A unified approach to canonical form-based Boolean matching
In DAC '07: Proceedings of the 44th annual conference on Design

automation pages 841-846, New York, NY, USA, 2007. ACM.
(3]

[4

Academic Press, 1984.

2(3):193-226, 1997.

Ken G. Beauchamp. Applications of Walsh and Related Functions

Luca Benini and Giovanni De MicheliA survey of Boolean matching
techniques for library bindingACM Trans. Design Autom. Electr. Syst.

10

Jerry R. Burch and David E. Longfficient Boolean function matching

In ICCAD '92: Proceedings of the 1992 IEEE/ACM international
conference on Computer-aided desigrages 408-411, Los Alamitos,
CA, USA, 1992. IEEE Computer Society Press.

Donald Chai and Andreas KuehlmannBuilding a better Boolean
matcher and symmetry detectorin DATE '06: Proceedings of the
conference on Design, automation and test in Europages 1079—
1084, 3001 Leuven, Belgium, Belgium, 2006. European Desigh an
Automation Association.

Jovanka Ciric and Carl Secherkfficient canonical form for Boolean
matching of complex functions in large librariekcEE Trans. on CAD
of Integrated Circuits and Systent22(5):535-544, 2003.

E. M. Clarke, K. L. McMillan, X Zhao, M. Fujita, and J. Yangpectral
transforms for large boolean functions with applicationgechnology
mapping. INDAC '93: Proceedings of the 30th international conference
on Design automatigrpages 54—60, New York, NY, USA, 1993. ACM.
Debatosh Debnath and Tsutomu Sasad=fficient computation of
canonical form for Boolean matching in large librarie;n Masaharu
Imai, editor, ASP-DAC pages 591-596. IEEE, 2004.

C. R. Edwards and S. L. Hurs# Digital Synthesis Procedure Under
Function Symmetries and Mapping Method$EEE Trans. Comput.
27(11):985-997, 1978.

Uwe Hinsberger and Reiner Koll®oolean matching for large libraries
In DAC '98: Proceedings of the 35th annual conference on Design
automation pages 206-211, New York, NY, USA, 1998. ACM.

Victor N. Kravets and Karem A. Sakallah. Generalizedhsyetries in
boolean functions. INCCAD '00: Proceedings of the 2000 IEEE/ACM
international conference on Computer-aided desigages 526-532,
Piscataway, NJ, USA, 2000. |IEEE Press.

Serge LangLinear Algebra Addison Wesley, 1966.

D. M. Miller. A spectral method for boolean function maitaty. In
EDTC '96: Proceedings of the 1996 European conference ongbesd
Test page 602, Washington, DC, USA, 1996. IEEE Computer Society.
Janett Mohnke, Paul Molitor, and Sharad MalikLimits of using
signatures for permutation independent Boolean comparidonisao
Shirakawa, editorASP-DAC ACM, 1995.

Fabio Somenzi. CUDD: CU Decision
http://visi.colorado.edu/ fabio/CUDD/

Diagram Package.

1 Kuo-Hua Wang. Exploiting k-distance signature for l@am matching

and g-symmetry detection. DAC '06: Proceedings of the 43rd annual
conference on Design automatjgrages 516-521, New York, NY, USA,
2006. ACM.

http://doi.acm.org/10.1145/1278480.1278689
http://doi.acm.org/10.1145/264995.264996
http://portal.acm.org/ft_gateway.cfm?id=304143&type=pdf&coll=GUIDE&dl=GUIDE&CFID=18386458&CFTOKEN=44017748
http://portal.acm.org/ft_gateway.cfm?id=1131780&type=pdf&coll=&dl=acm&CFID=15151515&CFTOKEN=6184618
http://ieeexplore.ieee.org/iel5/43/26910/01196197.pdf?tp=&arnumber=1196197&isnumber=26910
http://doi.acm.org/10.1145/1015090.1015251
http://ieeexplore.ieee.org/iel5/12/35164/01674988.pdf?tp=&isnumber=35164&arnumber=1674988
http://doi.acm.org/10.1145/277044.277100
http://doi.acm.org/10.1145/224818.224955
http://vlsi.colorado.edu/~fabio/CUDD/

