
A sensible title

Alessandro Barenghi
Politecnico di Milano

Milano, Italy
barenghi@elet.polimi.it

Gerardo Pelosi∗

Università degli Studi di Bergamo
Dalmine, Italy

gerardo.pelosi@unibg.it

Abstract

Keywords: Breaking fast

1 Introduction

The Data Encryption Standard (DES) [4] is one of the
most popular encryption algorithms, standardized by NIST
in 1977 and subsequently maintained as a FIPS security
primitive up to 2005 [5], when it was retired, since it had
been proved that the cypher could be broken via a brute
force attack [3]. Even though DES was not anymore con-
sidered safe for government applications, comments had to
be addressed holding that “the DES should be retained be-
cause it is widely used in the market” and “FIPS 46-3 and
associated standards are used in the commercial world and
serve important functions, including use by the entertain-
ment industry for real-time broadcast security, to prevent
unrestricted copying of files, and for the security of digi-
tal television signals” [5]. So, while not anymore relevant
for high-security applications, DES continues to be used
in many commercial applications by private organizations.
The DES encryption primitive is still supported by most en-
cryption suites, including OpenSSL [8].

DES was designed specifically for highly-optimizaed
hardware implementations, leaving the software implemen-
tations lacking in speed. Thus, both known brute force
attacks, Deep Crack [3] and COPACOBANA [2], rely on
dedicated hardware designs, the first in the form of special-
ized chips, the second in the form of FPGA-based hardware.
Specialized hardware is, however, costly, so that DES may
still remain a viable solution for short-term secrets, when
the potential attacker has only access to consumer hardware
and non-specialized knowledge.

The goal of this paper is to explore the viability of brute
force attacks to the DES cipher with consumer hardware.
Given the amount of computation needed to mount such an

∗This work was carried out under partial financial support of the Italian
MiUR (Project PRIN 2006 ID-2006099978) and in part by project FSE
ID-413174.

attack, GPGPU boards appear as the most promising tar-
get hardware: not only these boards provide a very low
cost/MIPS ratio (and one bound to drop further, given the
nature of the GPU market), but they are readily available and
easily programmed by anyone with general purpose pro-
gramming skills. If a brute force attack can be mounted
against DES with today’s GPUs, even if the performances
of modern dedicated hardware solutions such as COPA-
COBANA are not reached, the fast evolution of the GPU
market will provide more and more computational power
in the near future, making in the end the software solution
more cost efficient than comparable hardware solutions.

2 Des Cipher

Digital Encryption Standard (DES) is a symmetric block
cipher with 64-bit block size that uses a 56-bit key. As pre-
viously mentioned, it was chosen as U.S.A. federal standard
by NIST in 1977, when a key space of2

56 items was consid-
ered to be a good choice to make unfeasible any brute-force
attack. The 56-bit key of DES is used with an additional par-
ity byte to bring its size up to 64 bits. DES design consists
of two parts, the encryption/decryption algorithm and the
key-scheduling algorithm. It is an iterated block cipher con-
sisting of 16 rounds, each designed with a Feistel structure
and composed by bit-shuffling (P-boxes), non-linear func-
tions (S-boxes) and modular algebra linear transformations
through exclusive-OR operations. The Feistel schema has
the advantage that encryption and decryption operations are
identical, thus requiring only a reversal of the key schedule.

The key schedule algorithm, after an initial permutation
of the key bits (Permuted Choice 1, PC-1), discards the eight
parity bits and divides the key into two 28-bit halves; each
half is thereafter treated separately. In successive rounds,
both halves are rotated left by one or two bits (depending
on a predetermined table that specifies the rotations for each
round), and then 48subkey bits are selected through a sec-
ond fixed permutation (Permuted Choice 2, PC-2) – 24 bits
from the left half, and 24 from the right. A different set of
key bits is used in each subkey (one for each round of the en-
cryption/description algorithm) in such a way that each bit

1



is used in 14 out of the 16 subkeys:sbki, i ∈ {1, . . . , 16}.

For encryption, after the 64-bit plaintext is passed
through an initial predetermined permutation (IP), the out-
put is divided into two 32-bit blocks (L0, R0, respectively)
in order to serve as input of the first round. In the first round,
both the blockR0 and the subkeysbk1, are jointly evaluated
by the (Feistel)F function that includes a block expansion
operation to align its size to 48 bits, followed by a XOR
operation between the subkey and the expanded block and
eight substitutions through as mush S-boxes (each with 6
input and 4 outputs). Finally, to the resulting 32-bit value
is applied a fixed permutation (P-box). The output fromF

function is XORed withL0 to produceR1, whilst R0 is di-
rectly fed to the other input of the first round,L1. These
operations are iterated for 16 rounds, but after the last round
the left and right halves are not swapped and the result is
subject to a final permutation (PI) to generate the 64-bit ci-
phertext. As for decryption, the only difference from en-
cryption lies in the reverse order of the subkeys computed
through the key-scheduling algorithm.

The DES cipher was designed to intentionally slow down
software implementations. Indeed, permutations of individ-
ual bits, or application of an arbitrary function (S-box) to
six bits of one word in order to insert a four-bit result into
another word, are inefficiently executed on a word-based
general-purpose CPU. Eli Biham in [1], was the first to de-
scribe a software implementation of DES that exploits the
intrinsic bit-level parallelism of the cipher. The basic idea
lies in the application of the SIMD (Single Instruction Mul-
tiple Data) execution model at level of operations among the
n-bit integers of a general purpose CPU. Operations among
n-bit integers may be thought as executed byn virtual pro-
cessors, each executing the same instruction in parallel but
operating on different single bits of data. The implemen-
tation reported in [1] encodes the DES block values in a
non-standard way in order to mimic the fast hardware im-
plementation with a minimal gate counting and computes
each gate by a single instruction. It operates on 64-bit CPU
as a SIMD machine with 64 one-bit processors. The execu-
tion of permutation and expansion operations do not involve
any instruction but only registry renaming. Instead, the sub-
stitution functions are translated in a sequence of logical
operations that trace out the functionality of gate networks
used in the hardware implementation of S-boxes. Although,
the S-boxes are implemented in more instructions than the
ones needed for the usual look-up implementation, the par-
allelism of this solution achieves a considerable speed up
(about×5), even considering the initial and final translation
of the DES blocks in the non-standard representation used
by this method.

3 Cuda architecture

copiato secco da quello di PDCAT
In recent times, Graphics Processing Units (GPUs) have
been considered a potential source of computational power
for non-graphical applications, due to the ongoing evolution
of their programming interfaces and their appealing cost-
performance figures of merit. Pioneering works attempted
to adapt “general purpose” applications using graphic ren-
dering APIs (OpenGL and DirectX) since they were the only
way to tap into the GPU computational resources [9].

3.1 The NVIDIA GT200 Architectures

Modern GPUs now include hundreds of processing ele-
ments grouped in a hierarchical structure. In our case, the
NVIDIA GT200 GPU series provides a set of independent
multithreaded streaming multiprocessors.

Figure 1 shows an overview of the NVIDIA GT200
streaming processors array which is the part of the GPU
architecture responsible for the general purpose computa-
tion. Each streaming multiprocessor is composed by a set
of 8 streaming processors, two special functional units and
a multithreaded instruction issue unit (respectively indicated
as SP, SFU and MT-Issue in Figure 1). A SP is a fully
pipelined single-issue core with two ALUs and a single
floating point unit (FPU). SFUs are dedicated to the compu-
tation of transcendental functions and pixel/vertex manipu-
lations. The MT-Issue unit is in charge of mapping active
threads on the available SPs.

A multiprocessor is able to concurrently execute groups
of 32 threads calledwarps. Since each thread in a warp
has its own control flow, their execution paths may diverge
due to the independent evaluation of conditional statements;
when this happens, the warp serially executes each path.
When the warp is executing a given path, all threads that
have not taken that path are disabled. If the control flows
converge again, the warp is able to return to a single, par-
allel execution of all threads. Each multiprocessor exe-
cutes warps much like theSingle Instruction Multiple Data
(SIMD) paradigm, as every thread is assigned to a different
SP and every active thread executes the same instruction on
different data. The MT-Issue unit weaves threads into warps
and schedules an active warp for execution, using a round-
robin policy with aging.

Streaming multiprocessors are in turn grouped in Texture
Processor Clusters (TPC). Each TPC includes three stream-
ing multiprocessors in the GT200 architecture.

Finally, the NVIDIA GPU on-board memory hierarchy
includes registers (private to each SP), on-chip memory and
off-chip memory. The on-chip memory is private to each
multiprocessor, and is split into a very small instruction
cache, a read-only data cache, and 16 KB of addressable

2



SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream Multiproc Controller

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream Multiproc Controller

Texture/Processor Cluster

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream
Multiproc

Stream
Multiproc

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

I cache

MT issue

C cache

Memory
Shared

Stream Multiproc Controller

Texture/Processor ClusterTexture/Processor Cluster

Figure 1. Sketch of the NVIDIA GT200 streaming processors array architecture: each Tex-
ture/Processor Cluster contains three stream multiprocessors. In turn, each stream multiprocessor
is composed of eight streaming processor cores (SP), plus two special function units (SFU). Shared
memory is local to each stream multiprocessor.

shared data, respectively indicated as I-cache, C-cache and
Shared Memory in Figure 1. This shared memory is orga-
nized in 16 banks that can be concurrently accessed, each
bank having a single read/write port.

3.2 CUDA Programming Model

The Compute Unified Device Architecture (CUDA) [6,
7], proposed by NVIDIA for its G80, G92 and GT200
graphics processors, exposes a programming model that in-
tegrates host and GPU code in the same C++ source files.
The main programming structure supporting parallelism is
an explicitly parallel function invocation (kernel) which is
executed by a user-specified number of threads. Every
CUDA kernel is explicitly invoked by host code and ex-
ecuted by the device, while the host-side code continues
the execution asynchronously after instantiating the kernel.
The programmer is provided with a specific synchronizing
function call to wait for the completion of the active asyn-
chronous kernel computation.

The CUDA programming model abstracts the actual par-
allelism implemented by the hardware architecture, provid-
ing the concepts ofblock andthread to express concurrency
in algorithms. A block captures the notion of a group of
concurrent threads. Blocks are required to execute indepen-
dently, so that it has to be possible to execute them in any or-
der (in parallel or in sequence). Therefore, the synchroniza-

tion primitives semantically act only among threads belong-
ing to the same block. Intra-block communications among
threads use thelogical shared memory associated with that
block.

Since the architecture does not provide support for
message-passing, threads belonging to different blocks must
communicate throughglobal memory. The global memory
is entirely mapped to the off-chip memory. The concur-
rent accesses to logical shared memory by threads execut-
ing within the same block are supported through an explicit
barrier synchronization primitive.

A kernel call-site must specify the number of blocks as
well as the number of threads within each block when ex-
ecuting the kernel code. The current CUDA programming
model imposes a capping of 512 threads per block.

The mapping of threads to processors and of blocks to
multiprocessors is mainly handled by hardware controller
components. Two or more blocks may share the same
multiprocessor through mechanisms that allow fast context
switching depending on the computational resources used
by threads and on the constraints of the hardware architec-
ture. The number of concurrent blocks managed by a single
multiprocessor is currently limited to 8.

In addition to the logical shared memory and the global
memory, in the CUDA programming model each thread
may access aconstant memory. An access to this read-only

3



memory space is faster than one to global memory, provided
that there is sufficient access locality since constant memory
is implemented as a region of global memory fit with an on-
chip cache. Finally, another portion of the off-chip memory
may be allocated as alocal memory that is used as thread
private resource. Since the local memory access is slow, the
shared memory also serves as an explicitly managed cache
– though it is up to the programmer to warrant that the lo-
cal data being saved in shared memory are not accessed by
other threads. Shared memory comes in limited amounts
(threads within each block typically share 16 KB of mem-
ory) hence, it is crucial for performance for each thread to
handle only small chunks of data.

4 Implementation

Spiegazione di come stato implementato: se Fabrizio mi
manda i dati, divisa in

4.1 classical

implementazione straightforward: pro usa un basso nu-
mero di registri, possibile tenere tutto nei registri della
scheda, contro : la scheda non molto adatta a lavorare con
operazioni bitwise

4.2 bitslice

pro : la scheda lavora molto bene con operazioni orien-
tate al byte, la scheda ha registri nativi da 64 bit che aiutano
ad ottenere un alta efficienza in un implementazione bitslice.
contro : si usano maree di registri, il context switching mi
aspetto soffra un po’ e il tradeoff finir per essere con meno
thread

5 Experimental results and cost

numeri e tabelle : suddividerei la sezione in :

5.1 breaking speeds on a single board

qui si buttano gi i numerilli pratici , cavati a massimo
numero di blocchi lanciati (scenario migliore perch mini-
mizza la latenza di chiamare molti kernel) e facendo vedere
l’ evenutale andamento del throughput al variare del nu-
mero di thread per blocco. Per quello liscio mi aspetto i
soliti tradeoff points verso 128-256,(dovrebbero esserciad-
dirittura ancora i numeri di Maurizio ,ma ho tirato ancora
l’ implementazione). Per il bitsliced, who knows , credo ci
saranno tradeoff con meno thread per block.

5.2 Cost evaluation of a practical home-
made breaker

Qui potremmo proporre l’ analisi che mi ero fatto io
per costruire un cluster in casa, facendo vedere il tradeoff
migliore in termini di potenza di fuoco per ?. Fatto questo si
pu tirar fuori un bel grafico di tempi proiettati al crescere dei
soldini disponibili e far vedere quanto ci si mette a fronte di
che spesa. Probabilmente interessante vedere anche quante
macchine in pratica servono per sostenere il discorso di un
mini sforzo distribuito tra un gruppo di gamer con interessi.

6 Conclusions

il solito summary di tutto stressando il fatto che ormai il
DES si riesce a rompere (si spera) semplicemente metten-
dosi d’ accordo con gli amici al bar.

References

[1] E. Biham. A fast new des implementation in software. InFSE
’97: Proceedings of the 4th International Workshop on Fast
Software Encryption, pages 260–272, London, UK, 1997.
Springer-Verlag.

[2] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp.
Cryptanalysis with COPACOBANA.IEEE Trans. Comput.,
57(11):1498–1513, 2008.

[3] M. Loukides and J. Gilmore, editors.Cracking DES: Secrets
of Encryption Research, Wiretap Politics and Chip Design.
Electronic Frontier Foundation – O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1998.

[4] National Institute of Standards and Technology (NIST).FIPS-
46-3: Data Encryption Standard (DES).http://www.
itl.nist.gov/fipspubs/, May 1999.

[5] National Institute of Standards and Technology (NIST).An-
nouncing Approval of the Withdrawal of Federal Informa-
tion Processing Standard (FIPS) 46-3.Federal Register,
70(96):28907–28908, May 2005.

[6] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with cuda.ACM Queue, 6(2):40–53,
Mar. 2008.

[7] NVIDIA Corporation. CUDA Technology.http://www.
nvidia.com/CUDA, Sept. 2008.

[8] OpenSSL Project. OpenSSL.http://www.openssl.
org.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware.Computer Graphics Fo-
rum, 26(1):80–113, 2007.

4


