
Software Compiler Assignment on:

Vector Operations

The Software Compiler course exam is composed by two parts. One is a written test,
the other is an homework, to be terminated before course last class. The written test
contributes with the 40% to the whole grade, while the homework contributes with the
remaining 60%. To pass the whole exam, you must get a pass grade from both the test
and the homework.

During the lab classes, we show you the ACSE compiler and the associated assem-
bler [2]. They must be used as starting point for your homework. During the last class,
you must present your work, showing your edits, giving a brief demo, and responding at
some questions given by course lecturers.

Sources of ACSE can be found on the course site [3]. It is a tarball of the ACSE
mercurial [1] repository. You are required to version your code with mercurial. A copy
of your edits must be submitted to course lectures in the form of a patch with respect
to the version of ACSE you have used as starting point.

Assignment

You are required to modify both the front-end of the compiler and the back-end.

Front-end

Vector operations allows to perform simple operations – e.g. adding, subtracting, . . . –
to all elements stored in an ACSE array. Figure 1 shows some examples.

You are required to add support to the ACSE front-end for handling the following
vector operations:

Addition The vec_add(c, a, b) statement perform an element wise addition between
arrays a and b, storing the result into the array c, that is:

∀i | 0 ≤ i < length(c), c[i]← a[i] + b[i]

The three arrays must have the same length. If this does not hold, a compile-time
error must be raised. Code generator must target the standard ACSE assembly.

1



int a[10], b[10],
c[10], d[10];

vec_add(c, a, b);
vec_sub(d, a, b);

int a[10], b[10], c[10];
int cond;

vec_write(a);
vec_blend(c, a, b, cond);

Figure 1: Example of vector operations

Subtraction The vec_sub(c, a, b) statement perform an element wise subtraction
between arrays a and b, storing the result into the array c, that is:

∀i | 0 ≤ i < length(c), c[i]← a[i]− b[i]

The three arrays must have the same length. If this does not hold, a compile-time
error must be raised. Code generator must target the standard ACSE assembly.

Printing The vec_print(a) statement print the whole array. Code generator must
target the standard ACSE assembly.

Blending The vec_blend(c, a, b, cond) allows setting c according to expression
cond. If it holds, then vector a is copied into vector c. If it doesn’t hold, then vector b
is copied into vector c:

c←
{

a if cond 6= 0
b if cond = 0

The three arrays must have the same length, otherwise a compile-time error must be
raised. Code generator must target standard ACSE assembly.

Back-end

Peephole optimizations are optimizations applied later in the compilation process. Their
goal is to identify groups of subsequent instructions that can be substituted with another,
more efficient, instruction.

Let a, b, c, three labels in the data segment associated to SPACE directives. They can
be seen as a representation of ACSE arrays in assembler language. Suppose that the
following instructions are added to the ACSE assembly language:

• VADD c a b: interprets memory locations identified by a, b, and c as three 4
elements arrays, and performs element-wise addition of a and b, storing the result
in c

• VSUB c a b: interprets memory locations identified by a, b, and c as three 4
elements arrays, and performs element-wise subtraction of a and b, storing the
result in c

2



...
MOVA R1 L1
ADD R2 R0 (R1)
MOVA R1 L2
ADD R3 R0 (R1)
ADD R1 R2 R3
MOVA R2 L0
ADD (R2) R0 R1
...

(a) Source

...
VADD L0 L1 L2
...

(b) Optimized

Figure 2: Folding an addition

You are required to implement a simple peephole optimization, looking for instruction
sequences in the ACSE assembler that can be implemented using VADD or VSUB. Figure 2
shows an example.

If the pattern reported in Figure 2(a) is repeated 4 times without interruptions, then
the optimizer can fold the addition and generate the code reported in Figure 2(b).

Your optimizer must be a new ACSE tool, like asm – which can be used as starting
point. The tool must read an input text assembly, apply the optimization where possible,
and write in a new file the output assembly.

Creating and Applying Patches

The ACSE distribution is already provided as a mercurial repository. See [4] for the
basic mercurial commands.

Assuming that your work has been committed with revision X, to generate a patch
use the following command:

hg diff -r 0 -r X

Assuming the patch has been saved in the file patch.diff, use the following command
to apply it to a freshly unpacked ACSE source tree:

hg import patch.diff -m "Applied patch"

The submitted project must successfully pass the above process, i.e. before submitting
your patch check that it can be applied to a freshly unpacked ACSE source tree including
compilation and testing process where applicable.

References

[1] Mercurial. http://mercurial.selenic.com, 2011.

3



[2] A. Di Biagio and G. Agosta. Advanced Compiler System for Education.
http://compilergroup.elet.polimi.it, 2008.

[3] Formal Languages and Compilers Group. Software Compilers.
http://compilergroup.elet.polimi.it, 2010.

[4] J. Spolsky. Hg Init: a Mercurial Tutorial. http://hginit.com, 2011.

4


