Software Compiler Assignment on:

Switch Statement and LLVM

The Software Compiler course exam is composed by two parts. One is a written test,
the other is an homework, to be terminated before course last class. The written test
contributes with the 40% to the whole grade, while the homework contributes with the
remaining 60%. To pass the whole exam, you must get a pass grade from both the test
and the homework.

During the lab classes, we show you the ACSE compiler and the associated assem-
bler [3]. They must be used as starting point for your homework. During the last class,
you must present your work, showing your edits, giving a brief demo, and responding at
some questions given by course lecturers.

Sources of ACSE can be found on the course site [4]. It is a tarball of the ACSE
mercurial [2] repository. You are required to version your code with mercurial. A copy
of your edits must be submitted to course lectures in the form of a patch with respect
to the version of ACSE you have used as starting point.

Assignment

You are required to modify both the front-end of the compiler and the back-end.

Front-end

Control statement support in LANCE is poor. For this reason, a simplified version of
the switch statement is needed. Figure [I|shows an example of the simplified statement.
With respect to the C version of the statement, the following restrictions are applied:

e break statement is not supported

default case is not supported
e at the end of each case, control is transferred at switch end, thus, ...
e ...no support for case fall-through

You are required to modify the ACSE compiler in order to recognize the switch
statement and to generate code for the ACSE assembler.

switch(a) {
case O:

case 1:

Figure 1: A minimalistic switch statement

Back-end

LLVM [1] is a framework for developing compilers. It provides different libraries helping
developing a state-of-the-art compiler. In particular, it exposes a rich code generation
framework.

Exploiting LLVM in building a compiler is not a difficult task. The framework exposes

functions allowing to create modules, functions, basic blocks, The language used
by LLVM to define such things is called LLVM bitcode and is very similar to ACSE
assembly.

You are required to write a new back-end for the ACSE compilation system, targeting
LLVM bitcode. The backed must be a new ACSE tool that reads an ACSE assembly
input file, translates it into LLVM bitcode, and writes the result in a new file.

The asm tool can be used as starting point for your backend. You can use LLVM
libraries, C or C++ interface, in your work.

Creating and Applying Patches

The ACSE distribution is already provided as a mercurial repository. See [5] for the
basic mercurial commands.

Assuming that your work has been committed with revision X, to generate a patch
use the following command:

hg diff -r 0 -r X

Assuming the patch has been saved in the file patch.diff, use the following command
to apply it to a freshly unpacked ACSE source tree:

hg import patch.diff -m "Applied patch"

The submitted project must successfully pass the above process, i.e. before submitting
your patch check that it can be applied to a freshly unpacked ACSE source tree including
compilation and testing process where applicable.

References

[1] LLVM. http://llvm.org, 2011.
[2] Mercurial. http://mercurial.selenic.com, 2011.

[3] A. Di Biagio and G. Agosta. Advanced Compiler System for Education.
http://compilergroup.elet.polimi.it, 2008.

[4] Formal Languages and Compilers Group. Software ~ Compilers.
http://compilergroup.elet.polimi.it, 2010.

[5] J. Spolsky. Hg Init: a Mercurial Tutorial. http://hginit.com, 2011.

