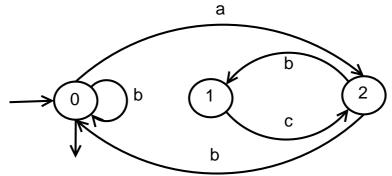
ALaRI - Software Compilers

Written Exam

29/01/2009

Exercise 1 (25%)


Given the following regular expression e:

$$e = a(b|bc^*)^*d$$

build the deterministic automaton that recognizes it.

Exercise 2 (25%)

Given the following finite state automaton that accepts strings of the language L_1 , compute the regular expression of L_1 .

Exercise 3 (50%)

Given the following program:

1	begin
2	$m \leftarrow 0$
3	$v \leftarrow 0$
4	if $v \leq n$ then
5	goto 22
6	\mathbf{end}
7	$s \leftarrow 0$
8	$q \leftarrow m$
9	if $q < n$ then
10	goto 14
11	end
12	$m \leftarrow m+1$
13	goto 4
14	$x \leftarrow M[q]$
15	$s \leftarrow s + x$
16	if $s \leq v$ then
17	goto 20
18	end
19	$q \leftarrow q + 1$
20	$v \leftarrow s$
21	goto 9
22	return v
23 end	

Perform flow analysis:

1. Draw the control flow graph.

2. Calculate live-in and live-out at each statement.

3. Construct the register interference graph.

4. Provide a register allocation, assuming a 4 registers machine.