ALaRI
Software Compilers

CODE GENERATION FOR GNU
LIGHTNING INSTRUCTION SET USING
THE ACSE COMPILER

Tutors:
Stefano Crespi Reghizzi
Giovanni Agosta
Andrea DiBiagio
Authors:
loannis Argyris
Konstantinos Padarnitsas

A.A. 2009

Introduction

The Advanced Compiler System for Education (ACSE) is a compiler deisgned to efficiently generate
assembly code for the MACE architecture, from source code written in LanCE language. There are two
main goals associated with this particular project. The first one, is to implement the switch and
break/continue constructs, so as to be supported from the compiler. It is obvious that in order to achieve
this, moderations in the front-end of the compiler must be performed. The second objective of the
project is to rewrite part of the back-end of the compiler, in order to generate code for the GNU
Lightning library.

In this report we are going to see all the alterations that were performed both in the front-end and back-
end of the compiler, as well as an introduction to GNU Lightning's “architecture” and its instruction set.

Front-end Modifications

The front-end of the compiler had to be modified in order to support switch and break/continue
constructs. As the front-end supports LanCE, which is a C based language, these constructs had to be
supported in their C format. To implement these statements we needed to perform some changes in the
Lexical Analyzer and the Parser of the comiler. Particularly, we had to introduce new tokens inside the
Lexical Analyzer, whereas in the Parser, the grammatical rules and the actions to control these tokens
had to be added.

Scanner Modifications

So as for the compiler to support any new constructs, the first step was to write them in its Lexical
Analyzer Acse.lex.

Parser Modifications

The second step is to add support in the parser (Acse.y). To do that we needed first to define some
variables that were to be used for the implementation of the desired statements. So, inside this module
many changes were made. In particular, in order to implement the switch construct in ACSE we have to
modify the grammar by adding in the control statements list the new switch statement. On the other
hand, the other keywords, such as break, default, case and continue are defined and implemented in the
statement list. For them to work properly they are treated by introducing labels and branching to them
accordingly. An example of the implementation of continue is shown below:

| CONTINUE SEMI

{

/* We insert an uncoditional branch to start the new
iteration */

gen_bt_instruction (program, label_ continue, 0);

We have to notice that break, default and case are used inside a switch statement and for this reason
they are included in its implementation. Break and continue were also added to be supported in the
while and do-while clauses. For this reason we had to write for the do-while clause a new kind of
statement, which was included in axe_struct.c and axe_struct.h, so as to be able to handle more than
one labels, namely three. Finally please have in mind that the support for all the above statements was
only added in the original ACSE and so the generated code is assembly for the MACE architecture and
not for GNU Lightning, which are going to see in the next paragraphs. An example of the generated
code from a switch statement follows:

//switchcase.src
int a,b;
a = 0;
read(b) ;
switch(b)
{
case 3

a=a+ 1;

break;
default:

b =Db + 3;
break;

}

write(a);

//switchcase.asm

LO
L1

L2

L4

.data

.WORD 0

.WORD 0

.text

ADDI R1 RO #0
STORE R1 LO
READ R2 0
STORE R2 L1
LOAD R2 L1
ADD R3 R2 RO
STORE R2 L1
ADDI R4 RO #3
SUB RO R4 R3
SNE RO 0

BEQ L4

LOAD R1 LO
ADDI R4 R1 #1
ADD R1 RO R4
STORE R1 LO
LOAD R2 L1
SUBI R4 R2 #1
ADD R2 RO R4
STORE R2 L1
BT L7

ADDI R4 RO #4
SUB RO R4 R3
SNE RO O

BEQ L5

//continue of switchcase.asm

L5

L6

L7

LOAD R2 L1
ADDI R4 R2 #1
ADD R2 RO R4
STORE R2 L1
BT L7

ADDI R4 RO #5
SUB RO R4 R3
SNE RO O

BEQ L6

LOAD R2 L1
ADDI R3 R2 #2
ADD R2 RO R3
STORE R2 L1
BT L7

LOAD R2 L1
ADDI R3 R2 #3
ADD R2 RO R3
STORE R2 L1
BT L7

LOAD R1 LO
WRITE R1 0
STORE R1 LO
HALT

GNU Lightning

GNU lightning is a C library that generates assembly language code at run-time; it is very fast, making
it ideal for Just-In-Time compilers, and it abstracts over the target CPU, as it exposes to the clients a
standardized RISC instruction set inspired by the MIPS and SPARC chips. It is usable in complex code
generation tasks. The available backends cover the x86, SPARC and PowerPC architectures.

Dynamic code generation is the generation of machine code at runtime. It is typically used to strip a
layer of interpretation by allowing compilation to occur at runtime. One of the most well-known
applications of dynamic code generation is perhaps that of interpreters that compile source code to an
intermediate bytecode form, which is then recompiled to machine code at run-time: this approach
effectively combines the portability of bytecode representations with the speed of machine code.
Another common application of dynamic code generation is in the field of hardware simulators and
binary emulators, which can use the same techniques to translate simulated instructions to the
instructions of the underlying machine. GNU Lightning provides a portable, fast and easily retargetable
dynamic code generation system.

To be fast, GNU lightning emits machine code without first creating intermediate data structures such
as RTL representations traditionally used by optimizing compilers. GNU lightning translates code
directly from a machine independent interface to that of the underlying architecture. This makes code
generation more efficient, since no intermediate data structures have to be constructed and consumed.
A collateral benefit it that GNU lightning consumes little space: other than the memory needed to store
generated instructions and data structures such as parse trees, the only data structure that client will
usually need is an array of pointers to labels and unresolved jumps, which you can often allocate
directly on the system stack.

To be portable, gnu lightning abstracts over current architectures' quirks and unorthogonalities. The
interface that it exposes to is that of a standardized RISC architecture loosely based on the SPARC and
MIPS chips. There are a few general-purpose registers (six, not including those used to receive and pass

parameters between subroutines), and arithmetic operations involve three operands—either three
registers or two registers and an arbitrarily sized immediate value.

On one hand, this architecture is general enough that it is possible to generate pretty efficient code even
on CISC architectures such as the Intel x86 or the Motorola 68k families. On the other hand, it matches
real architectures closely enough that, most of the time, the compiler's constant folding pass ends up
generating code which assembles machine instructions without further tests.

Gnu Lightning registers

There are at least seven integer registers, of which six are general-purpose, while the last is used to
contain the frame pointer (FP). The frame pointer can be used to allocate and access local variables on
the stack, using the allocai instruction.

Of the general-purpose registers, at least three are guaranteed to be preserved across function calls (V0,
V1 and V2) and at least three are not (RO, R1 and R2). Six registers are not very much, but this
restriction was forced by the need to target CISC architectures which, like the x86, are poor of registers;
anyway, backends can specify the actual number of available registers with the macros JIT_R_NUM
(for caller-save registers) and JIT_V_NUM (for callee-save registers).

In addition, there is a special RET register which contains the return value of the current function (not
the return value of callees—use the retval instruction for this). You should always remember,
however, that writing this register could overwrite either a general-purpose register or an incoming
parameter, depending on the architecture.

There are at least six floating-point registers, named FPRO to FPRS. These are caller-save and are
separate from the integer registers on all the supported architectures; on Intel architectures, the register
stack is mapped to a flat register file. As for the integer registers, the macro JIT_FPR_NUM yields the
number of floating-point registers, and the special FPRET register contains the return value of the
current function. These registers were not implemented in our back-end in ACSE, since ACSE operates
only with integers. For this same reason we had to implement only the integer instructions.

Gnu Lightning instructions

Gnu lightning's instruction set was designed by deriving instructions that closely match those of most
existing RISC architectures, or that can be easily syntesized if absent. Each instruction is composed of:

e an operation like sub or mul

e sometimes, a register/immediate flag (r or I)
e a type identifier or, occasionally, two

The second and third field are separated by an underscore; thus, examples of legal mnemonics are
addr_1i (integer add, with three register operands) and muli_1 (long integer multiply, with two

register operands and an immediate operand). Each instruction takes two or three operands; in most
cases, one of them can be an immediate value instead of a register. Finally we have to notice that GNU
Lightning supports many different data types, such as integer, float, double, etc. As ACSE supports
only integer type, we were forced to implement only the integer operations. We consider that making
ACSE support all the Lighning data types was out of the scope of this particular project.

GNU Lightning instruction set

The instruction set of GNU Lightning follows. We are going to show all the instructions, along with
their operation. It is very important though to understand, that this is not the way these instructions are
written, as macro operations are used. We have to remember that GNU Lightning is a C library and not
an assembly language.

Binary ALU operations

These accept three operands; the last one can be an immediate value for integer operands, or a register
for all operand types. addx operations must directly follow addc, and subx must follow subc;
otherwise, results are undefined.

addr 0l = 02 + O3

addi 0l = 02 + 03

addxr 0l = 02 + (03 + carry)
addxi 0l = 02 + (03 + carry)
addcr 0l = 02 + 03, set carry
addci 0l = 02 + 03, set carry
subr 01l = 02 - 03

subi 01l = 02 - 03

subxr 0l = 02 - (03 + carry)
subxi 0l = 02 - (O3 + carry)
subcr 0l = 02 - 03, set carry
subci 0l = 02 - 03, set carry
rsbr 01l = 03 - 02

rsbi 0l = 03 - 02

mulr 01 = 02 * 03

muli 01 = 02 * 03

hmulr Ol = high bits of 02 * O3
hmuli Ol = high bits of 02 * O3
divr 0l = 02 / 03

divi 01 = 02 / O3

modr 01l = 02 % 03

modi 01l = 02 % 03

andr 01 = 02 & O3

andi 0l = 02 & 03

orr 0l = 02 | O3

ori 0l = 02 | O3

XOrr 0l = 02 ~ 03

xori 0l = 02 ~ 03

lshr 01l = 02 << 03

1shi 01l = 02 << 03

rshr 01l = 02 >> 03

rshi 01l = 02 >> 03

Unary ALU operations
These accept two operands, both of which must be registers.

negr 0l = -02
notr 01 = ~02

Compare instructions

These accept three operands; again, the last can be an immediate value for integer data types. The last
two operands are compared, and the first operand is set to either O or 1, according to whether the given
condition was met or not.

ltr 0l = (02 < 03)
1ti 0l = (02 < 03)
ler 0l = (02 <= 03)
lei 0l = (02 <= 03)
gtr 0l = (02 > 03)
gti 0l = (02 > 03)
ger 0l = (02 >= 03)
gei 0l = (02 >= 03)
eqr 0l = (02 == 03)
eqi 0l = (02 == 03)
ner 0l = (02 != 03)
nei 0l = (02 != 03)
Transfer operations
These accept two operands.
movr 0l = 02
movi 0l = 02

Load operations

1d accept two operands while 1dx accept three; in both cases, the last can be either a register or an
immediate value. Values are extended (with or without sign, according to the data type specification) to
fit a whole register.

ldr o1 *02
1di 0l = *02

Store operations
st accept two operands while stx accept three; in both cases, the first can be either a register or an
immediate value. Values are sign-extended to fit a whole register.

str *01 02
sti *01l = 02

Branch instructions
These return a value which, in this case, is to be used to compile forward branches as explained in
They accept a pointer to the destination of the branch and two operands to be compared; of these, the

last can be either a register or an immediate.

bltr if (02 < 03) goto 01

blti if (02 < 03) goto 01

bler if (02 <= 03) goto 01

blei if (02 <= 03) goto 01

bgtr if (02 > 03) goto O1

bgti if (02 > 03) goto O1

bger if (02 >= 03) goto 01

bgei if (02 >= 03) goto 01

beqgr if (02 == 03) goto O1

beqgi if (02 == 03) goto O1

bner if (02 !'= 03) goto O1

bnei if (02 !'= 03) goto O1

bmsr if 02 & 03 goto 01

bmsi if 02 & 03 goto 01

bmcr if (02 & 03) goto O1

bmci if (02 & 03) goto O1

boaddr 02 += 03, goto Ol on overflow

boaddi 02 += 03, goto Ol on overflow

bosubr 02 -= 03, goto Ol on overflow

bosubi 02 —-= 03, goto 01 on overflow
Uncoditional jump and return

Jmpi unconditional jump to O1

ret return from subroutine

A simple GNU Lightning example

Now that we have seen all the instructions, we are going to show a small example of GNU Lightning
code, to understand its syntax and its use of macros. Below we can see a small program, which
increments one variable.

#include <stdio.h>
#include "lightning.h"

static jit_insn codeBuffer[1024];
typedef int (*pifi) (int); /* Pointer to Int Function of Int */

int main ()

{

pifi dincr = (pifi) (jit_set_ip(codeBuffer) .iptr);

int in;

jit_leaf (1); /* leaf 1 */
in = jit_arg_1i(); /* in = arg_i */
jit_getarg_i(JIT_RO, in); /* getarg_i RO */
jit_addi_i (JIT_RET, JIT_RO, 1); /* addi_i RET, RO, 1 */

jit_ret(); /* ret */

jit_flush_code (codeBuffer, jit_get_ip() .ptr);

/* call the generated code, passing 5 as an argument */
printf("%$d + 1 = %d\n", 5, incr(5));
return 0;

As we can see all the macros are written in the jit_inst_i (arg); format. The i is used to
determine that this macro uses integer as its data type. Also, all the registers are written in the
JIT_REG format. This is the format that we have to use for the generation of GNU Lightning code via
ACSE. The final code that is going to be generated is just the true GNU Lightning code, which includes
only the macros, without the C Language part.

Back-end Modifications

ACSE has been designed for the generation of assembly code for the MACE architecture. In order to
make ACSE able to generate code for GNU Lightning, a lot of changes had to be done in the back-end
of the compiler. Specifically the components that were changed are:

axe_gencode
axe_cflow_graph
axe_engine
axe_array
axe_costants
axe_expression

Most of the changes were made in axe_gencode.c and axe_gencode.h, where, despite the fact that we
kept many instructions, we had to add a lot of instructions that are supported by GNU Lightning and
not by MACE. By keeping the instructions, which have the same function in MACE and Lightning, we
had to adjust them all, so as to be generated in the proper format. For this reason massive changes had
to be performed in the axe_engine.c file. Moreover, the axe_array.c, was almost re-written, since for
the load and store functions we do not need to run so many instructions in GNU Lightning, as in
MACE. Finally, we have to notice that for the proper generation of branches, some changes in the front-
end (Acse.y) of the compiler had to be done, as to translate correctly the control statements of LanCE.

As far as the registers are concerned, as we have said before there are only six general purpose registers
in GNU Lightning. For this reason we had to reduce the number of registers of MACE. However, as
ACSE uses three registers for spill operations, we decided to keep nine registers instead of six, which
were also renamed to have the proper format. A final thing we have to notice is the use of labels in
GNU Lightning. Since there is no thing exact thing as labels, GNU Lighning exploits the integer data
type of C to generate them. For this reason with the use jit_get_label (), we can use a variable as
a label for the bracnhes. Variables and arrays are also used to store values in the same way as C, and
with the macro jit_allocai ()we can allocate as memory as we wish to store an array.

Finally, we are going to see an example of the generated GNU Lightning code in comparison to a
source file and to the assembly code generated for the MACE architecture. We want to remind that the
generated GNU Lightning code doesn't contain the total C structures, such as a main() or the include of
the libraries:

//dowhile.src //dowhile.asm (MACE)
int a,b; .data

Lo : .WORD 0
a = 0; Ll : .WORD 0
read(b); .text

ADDI R1 RO #0
do STORE R1 LO
{ READ R2 0
a=a+ 1; STORE R2 L1
b=Db- 1; L2 : LOAD Rl LO
}while(b > 0); ADDI R3 R1 #1
ADD R1 RO R3
write(a); STORE R1 LO
LOAD R2 L1
SUBI R3 R2 #1
ADD R2 RO R3
SUBI RO R2 #0
STORE R2 L1
SGT RO O
BNE L2
LOAD R1 LO
WRITE R1 O
STORE R1 LO
HALT

//dowhile.asm(GNU Lightning)

int *LO 0;

int *L1 = 0;

jit_addi_1i
jit_str_1i
scanf
jit_str_1i

jit_insn *L2;

(JIT_R1, JIT_RO, 0);
(*L0, JIT_R1);
("%d", &JIT_VO);
(*L1, JIT_VO0);

L2 = Jit_get_label();
jit_1di_i (JIT_R1, *LO);
jit_addi_i (JIT_v1, JIT_R1, 1);
jit_addr_i (JIT_R1, JIT_RO, JIT_V1);
jit_1di_i (JIT_VO, *L1);

jit_subi_i
jit_addr_i
Jjit_gti_1i
jit_str_1i
jit_movi_i
jit_bner_i
printf
jit_str_1i

jit_ret();

(JIT_V1, JIT_VO0, 1);
(JIT_VvO, JIT_RO, JIT_V1);
(JIT_RO, JIT_VO, 0);
(*L1, JIT_VO);

(JIT_R2, 0);

(L2, JIT_RO, JIT_R2);
("%d",JIT_R1);

(*L0, JIT_R1);

