
An Introduction to Assembly Programming with

the ARM 32-bit Processor Family

G. Agosta
Politecnico di Milano

December 3, 2011

Contents

1 Introduction 1
1.1 Prerequisites . 2
1.2 The ARM architecture . 2

2 A First Assembly Program 3
2.1 Assembler Program Template . 3
2.2 Using the GNU Assembler . 3
2.3 The GNU Debugger . 4

3 The Assembly Language 5
3.1 Arithmetic-Logic Instructions . 5
3.2 Branch Instructions . 6

3.2.1 Translating Conditional Statements 7
3.2.2 Translating While and Do-While Statements 8

3.3 Load/Store Instructions . 10
3.4 The Global Data Section . 11

4 Function Invocation and Return 12
4.1 Runtime Architecture . 13
4.2 The Program Stack . 14

1 Introduction

Assembly languages are used to program computers at a level that is close
enough to the hardware to enjoy significant insights into the actual hardware
and its performances.

As computer engineers, we are interested in understanding assembler pro-
gramming chiefly because it gives us a better grip on the way higher level lan-
guages such as the C language are implemented – what is implied in a function
call, for loop or array access? How can such complex structures be expressed
when only registers, memory, and simple three-operand instructions are avail-
able?

1

Just like high level language programs, assembly programs are “compiled”
to a lower-level representation, the machine code. This process is called “as-
sembling”, and the software tool that performs it is know as the assembler.

1.1 Prerequisites

To make the most from the present material, some understanding of the C
programming language (or another high-level language) is needed. To check
you fulfill this requirement, consider the following C program:

1 #include <string.h >

2

3 int main(int argc , char **argv){

4 int count =0;

5 int i;

6 for(i=1; i<argc; i++)

7 if (strlen(argv[i]>argc) count ++;

8 return count;

9 }

What does the program compute as its exit value, as a function of the
program arguments? 1

1.2 The ARM architecture

The ARM architecture is a relatively simple implementation of a load/store ar-
chitecture, i.e. an architecture where main memory (RAM) access is performed
through dedicated load and store instructions, while all computation (sums,
products, logical operations, etc.) is performed on values held in registers.

For example, ADD R4, R1, R2 will store in register R4 the sum of the values
held in R1 and R2.

The ARM architecture provides 16 registers, numbered from R0 to R15, of
which the last three have special hardware significance.

R13, also known as SP, is the stack pointer, that is it holds the address of
the top element of the program stack. It is used automatically in the PUSH and
POP instructions to manage storage and recovery of registers in the stack.

R14, also known as LR is the link register, and holds the return address, that
is the address of the first instruction to be executed after returning from the
current function.

R15, also known as PC is the program counter, and holds the address of the
next instruction. 2

We will have a better look at special use registers in Section 4.1. For now,
we will just avoid using them to store variable values needed in our programs.

1No, I’m not going to give you the solution. If you can’t find it on your own, you’d better
ask, because you need to fix your basic C language skills as soon as possible!

2Due to architectural specificities, in ARM this is the address of the second next instruction!
Thus, it is better not to modify the PC by hand!

2

2 A First Assembly Program

In this section, we will write a very simple assembly program, which can be
used as a template for others, compile and link it, and execute it. To do so,
it is assumed that you have installed a Qemu ARM virtual machine, using the
instructions provided on my website. 3

Assembler languages only define instructions and hardware resources. To
drive the assembly and linking processes, we also need to use directives, which
are interpreted by the assembler. We will use the GNU Assembler (as), with
its specific directives.

2.1 Assembler Program Template

Here is the simplest program we can write in the ARM assembler language, one
that immediately ends, returning control to the caller.

1 .arm /* Specify this is an ARM 32-bit program */

2 .text /* Start of the program code section */

3 .global main /* declares the main identifier */

4 .type main , %function

5 main: /* Address of the main function */

6 /* Program code would go here */

7 BX LR /* Return to the caller */

8 .end /* End of the program */

The .arm directive specifies that this program is an ARM 32-bit assembly
code. The ARM architecture includes other types of programs (which we will
not see here), so this directive is needed for the Assembler to decide how to
assemble the program.

The .text directive indicates the start of a section of the assembly program
that contains code. Other sections could contain, e.g., the definition of global
data (i.e., global variables).

The .global main line specifies that main is a globally visible identifier,
which can be referred to from outside this file 4 This is necessary, because main

is the program entry point, and the corresponding function will be invoked from
outside the program!

.type main, %function specifies that the main identifier refers to a func-
tion. More precisely, it is a label indicating the address of the first instruction
of the main function.

main: BX LR is the first (and only) instruction of this program. It is prefixed
with a label, which allows to refer to the instruction address from other points
in the same compilation unit, or other units if, as in this case, the symbol main
is defined as a global identifier.

The .end directive specifies the end of the program.

2.2 Using the GNU Assembler

The GNU Assembler can be invoked as a standalone program, with a line such
as:

3http://home.dei.polimi.it/agosta
4More precisely, outside this compilation unit.

3

1 as -o filename.o filename.s

This will result in a object file, that is a machine code file, which is still not
executable, because some external symbols (e.g., library functions) may not be
resolved yet. To complete the compilation, we need to link the file, using the
GNU linker (as we would do with an object file derived from the compilation of
a high level language program).

However, the GNU C Compiler (gcc) wraps the invocation of the assembler
and linker, so it is simpler for our purpose to just call the compiler itself:

1 gcc -o filename.x filename.s

This will result in a fully assembled and linked program, ready for execution.
Executing this program will not result in any fancy effect: indeed, the pro-

gram does nothing, except for terminating. However, we do have two ways to
check that it is actually working. The first exploits the fact that, in the ARM
Runtime Architecture 5 the first register (R0) is used to pass the first parameter
to a function, and the return value from a function as well. So, our first program
is equivalent to the following C language program:

1 int main(int argc){

2 return argc;

3 }

where the value of the argc variable is held in register R0 for the entire life of
the program.

So, we can check that the return value of the program is actually the same
as the number of parameters passed to it, plus one. We can do so with the
following command, given to the command line of our virtual machine:

1 echo $_

This command prints out the return value of the last executed program, thus
allowing us to see the value of argc printed out to the console.

2.3 The GNU Debugger

The second way of checking on the behaviour of our program is to follow its
execution through the debugger.

To prepare the executable file for execution with the debugger, we recompile
it adding the -g flag, which specifies to the compiler that the debugging support
should be activated:

1 gcc -g -o filename.x filename.s

The debugger is invoked with the following command:

1 gdb ./filename.x

where “filename.x” is the name of our executable file.
Within the debugger shell, we use the following command to set up the

execution, start it and block it at the beginning of the main function:

5The Runtime Architecture is the set of conventions that allow programs and functions
written by different programmers to cooperate, by specifying how parameters are passed, and
which information is preserved across a function call.

4

1 set args myFirstArgument mySecondArgument etCetera

2 break main

3 run

Then, we can use the print command to show the value of any variable
(when debugging high-level language programs), the step command to progress
to the next instruction and the info register to see the contents of all regis-
ters.

The debugger has many more commands to control and inspect the execu-
tion. They are documented by means of an internal help, accessed with the
help command.

3 The Assembly Language

As shown in the first example, assembly statements are structured in the fol-
lowing way:

1 label: instruction

Comments can be inserted in the C style (delimited by /* */ strings). The
label is optional – it is possible to define instructions without a label. The
label is used to refer to the instruction address in the code – in particular, this
is necessary to perform branch (also know as jump) instructions. Labels (like
other symbols) can be any sequence of alphanumeric characters. The underscore
(’ ’) and dollar (’$’) characters can also by used, and numeric characters (digits)
cannot appear as the first character of a symbol.

Instructions can be divided in three different sets:

Arithmetic-Logic instructions perform mathematical operations on data: these
can be arithmetic (sum, subtraction, multiplication), logic (boolean oper-
ations), or relational (comparison of two values).

Branch instructions change the control flow, by modifying the value of the
Program Counter (R15). They are needed to implement conditional state-
ments, loops, and function calls.

Load/Store instructions move data to and from the main memory. Since all
other operations only work with immediate constant values (encoded in
the instruction itself) or with values from the registers, the load/store
instructions are necessary to deal with all but the smallest data sets.

In the rest of this section, we will present a subset of the ARM instruction
set that can be used to produce complete programs, but is much smaller than
the full set.

3.1 Arithmetic-Logic Instructions

Arithmetic instructions include the following (where Rd, Rn and Rm are any three
registers, and #imm are 8-bit immediates):

5

Syntax Semantics
ADD Rd Rn Rm/#imm Rd = Rn + Rm/#imm

SUB Rd Rn Rm/#imm Rd = Rn - Rm/#imm

MUL Rd Rn Rm Rd = (Rn * Rm/#imm)%232 (i.e., truncated at
32 bits)

AND Rd Rn Rm/#imm Rd = Rn & Rm/#imm (bitwise and)
EOR Rd Rn Rm/#imm Rd = Rn ^ Rm/#imm (bitwise exclusive or)
ORR Rd Rn Rm/#imm Rd = Rn | Rm/#imm (bitwise or)
MVN Rd Rm/#imm Rd = ~ Rm/#imm (bitwise negation)
CMP Rn Rm/#imm Status ← comparison (<, >, ==) of Rn and Rm

/#imm

MOV Rd Rm/#imm Rd = Rm/#imm
Most arithmetic instructions are rather straightforward: the contents of Rd

are replaced with the results of the operation performed on the values of Rn and
Rm (or Rn and a constant #imm).

For example, the instruction SUB R2 R2 #12 reduces the value of R2 by 12.
Also, it is easy to translate C language statements to ARM assembly instruc-
tions, as long as all variable values are stored in the registers. E.g., consider the
following C fragment:

1 int i=0,j=2,k=4;

2 i=k|j; /* Bitwise or */

Assuming the values of the three variables are stored respectively in the registers
R4, R5, and R6, then we can translate the fragment as follows:

1 MOV R4 #0 /* i=0; */

2 MOV R5 #2 /* j=2; */

3 MOV R6 #4 /* k=4; */

4 ORR R4 R5 R6 /* i=k|j; */

It is important to note that multiplication is more difficult to implement in
hardware than other instructions. Thus, the MUL instruction presented truncates
the result to the least significant 32 bits. Contrary to most other instructions,
in MUL Rd and Rm cannot be the same register. 6

The comparison instruction, CMP, does not store its result in the general
purpose registers. It uses instead a special (not directly accessible to the pro-
grammer) register, called the Processor Status Word. The comparison result
tells the processor whether the value in Rn is greater, lesser or equal to Rm (or
the constant operand). This information can then be used to decide whether to
perform a successive conditional branch instruction or not.

3.2 Branch Instructions

The basic functionality of the branch instruction is to change the Program
Counter, setting it to a new value (usually a constant, but not always). The set
of branch instructions includes the following:

6This restriction has been removed in new version of the ARM instruction set, but the
virtual machine provided for the course shows a slightly older and more common version,
which features this restriction.

6

Syntax Semantics
B label jump to label (unconditional)
BEQ label jump to label if previously compared values were equal
BNE label jump to label if previously compared values were differ-

ent
BGT label jump to label if previously compared Rn > Rm/#imm

BGE label jump to label if previously compared Rn >= Rm/#imm

BLT label jump to label if previously compared Rn < Rm/#imm

BLE label jump to label if previously compared Rn <= Rm/#imm

BL label function call (label is the function name/entry point)
BX Rd return from function (always as BX lr)

B label is the basic branch. Control is changed to run the instruction
labeled with label next.

BL label performs a function call, which means it jumps as in B label,
but also saves the value of the Program Counter in the Link Register (as by
MOV LR PC).

Return from function is performed by BX LR. It is almost the same as MOV
PC LR, but the PC should not be manipulated explicitly by programmer, unless
there is a very good reason to do so.

All other instructions are conditional variants of the basic branch. They
perform as B label, if the specified condition was met. E.g., consider the
following fragment:

1 CMP R0 #0

2 BGT label

3 ADD R0 R0 #1

Here, we first compare R0 to 0, then branch to label if (and only if) the
value contained in R0 is greater than zero. Otherwise, we step to instruction 3.

We can use any comparison condition – the table above lists the most com-
mon conditions.

3.2.1 Translating Conditional Statements

A key issue in understanding assembly is to understand how high level control
statements can be implemented in the lower level assembly language. The first
step is to learn how to represent in assembly the “if-then-else” construct of C
(and other high-level languages).

Let us consider a C code fragment containing a conditional, such as this:

1 int x,y;

2 ...

3 if(x>0) {

4 y=1;

5 } else {

6 y=2;

7 }

8 return y;

Assuming x and y are stored in R4 and R5 respectively, we can translate the
C fragment as follows:

7

1 CMP R4 #0 /* we need to check x>0 */

2 BLE else /* if (!(x>0)) go to else */

3 MOV R5 #1 /* y=1; */

4 B end /* skip the else part */

5 else : MOV R5 #2 /* y=2; */

6 end : MOV R0 R5 /* R0 is the return value */

7 BX LR /* return from function */

We can see that, at line 1 and 2 in the assembly code, we are setting up and
executing a conditional branch, which allows us to skip the “then” part of the
code (y=1; in our example) if the condition (x>0) is not respected. Otherwise,
the standard behaviour (falling through to the next instruction) is used, and the
“then” part is executed. In this latter case, we need to ensure that the “else”
part is not executed – in the original C construct, the two parts are mutually
exclusive: only one is executed after the condition is resolved. Thus, at line 4,
we add an unconditional branch B end to skip the “else” part and move directly
to the end of the “if-then-else” statement.

3.2.2 Translating While and Do-While Statements

Having understood how to implement conditional statements, we need now to
do the same for loop statements.

Let us start from a while statement, such as the one shown in the following
C code fragment:

1 int x,y;

2 ...

3 y=1;

4 while(x>0) {

5 y*=x;

6 x--;

7 }

8 return y;

Note that the code fragment computes the following mathematical function,
for the given value of x:

y ← x!%232

Assuming x and y are stored in R4 and R5 respectively, we can translate the
C fragment as follows:

1 MOV R5 #1 /* y=1; */

2 loop : CMP R4 #0 /* we need to check x>0 */

3 BLE end /* if (!(x>0)) end the loop */

4 MUL R6 R5 R4 /* tmp=y*x; */

5 MOV R5 R6 /* y=tmp; */

6 SUB R4 R4 #1 /* x=x-1; */

7 B loop /* loop back to condition */

8 end : MOV R0 R5 /* R0 is the return value */

9 BX LR /* return from function */

We can see that, at line 1 and 2 in the assembly code, we are setting up
and executing a conditional branch, which allows us to exit the loop when the

8

condition in the original code (x>0) is not met anymore. Otherwise, the standard
behaviour (falling through to the next instruction) is used, and the loop body
is executed. After the end of the loop body (line 6), we need to return to the
check of the condition, to start a new iteration of the loop. Thus, at line 7, we
add an unconditional branch B loop to go back to the beginning of the loop,
marked by the loop label.

Given a do-while loop, we can perform a similar translation. Here is a C
fragment that computes the same factorial function, except that for x==0, the
return value is 0 rather than 1.

1 int x,y;

2 ...

3 y=1;

4 do {

5 y*=x;

6 x--;

7 } while(x>0);

8 return y;

Using the same assumptions on data storage as before, we get the following
translation:

1 MOV R5 #1 /* y=1; */

2 loop : MUL R6 R5 R4 /* tmp=y*x; */

3 MOV R5 R6 /* y=tmp; */

4 SUB R4 R4 #1 /* x=x-1; */

5 CMP R4 #0 /* we need to check x>0 */

6 BGT loop /* loop back to if x>0 */

7 end : MOV R0 R5 /* R0 is the return value */

8 BX LR /* return from function */

The only notable difference with respect to the while version is that it is
now the branch back to the loop head that is conditional, and we only need one
branch, since there is no control at the beginning. Of course, this is because we
do not check that x>0 at the beginning of the loop.

It might seem that translating the for loop involves a greater difficulty,
because the loop statement is more complex. However, it is not so, because the
C for loop can be immediately transformed into a C while loop! For example,
consider the following C code fragment:

1 int x,y;

2 ...

3 for(y=1; x>0; x--) y*=x;

4 return y;

It is easy to see that the loop at line 3 has exactly the same behaviour as
the while loop. More in general, a C for loop has the following structure: for(
initialization; condition; loop_step)loop_body;, where initialization
, condition, and loop_step are any three C expressions, and body is a C
statement (possibly compound). It can be transformed in a while loop in this
way:

1 initialization;

9

2 while(condition){

3 loop_body;

4 loop_step;

5 }

Translation to assembly, in general, passes through this C-to-C transforma-
tion (called lowering).

3.3 Load/Store Instructions

Last but not least, load and store instructions perform data transfer from mem-
ory to registers and vice versa. The following instructions allow us to work with
word and byte sized data:

Syntax Semantics
LDR Rd [Rn, Rm/#imm] Rd = mem[Rn+Rm/#imm] (32 bit copy)
STR Rd [Rn, Rm/#imm] mem[Rn+Rm/#imm] = Rd (32 bit copy)
LDRB Rd [Rn, Rm/#imm] Rd = mem[Rn+Rm/#imm] (8 bit copy)
STRB Rd [Rn, Rm/#imm] mem[Rn+Rm/#imm] = Rd (8 bit copy)
PUSH { register list } Push registers onto stack
POP { register list } Pop registers from stack

In load instructions, values are read from a certain memory address and
moved to register Rd, while in store instructions Rd is the source from which data
is read, and the values are stored in memory. The memory address employed is,
in both cases, computed as the sum of a base Rn and an offset (Rm or a constant).
Usually, the programmer uses this capability to access arrays of data. Consider
the following C fragment:

1 char AA[10], BB [10];

2 ...

3 AB[i]=BB[i];

where AA and BB are arrays. If the base addresses of AA and BB are kept in R4

and R5, and i is stored in R1, then the statement at line 3 can be translated as

1 LDRB R6 R5 R1

2 STRB R6 R4 R1

Note that, since the memory is byte-addressed (each address corresponds to
a specific byte), when an array of integers is to be accessed, we need to modify
the array index to be incremented in steps of 4 rather than steps of 1. For
example, consider the following C code fragment:

1 int AA[10], BB [10];

2 ...

3 i=2;

4 AA[i]=AB[i];

The corresponding ARM assembly translation, using the same storage for
addresses and variables, would be:

1 MOV R1 #8 /* 2*4: addressing in bytes! */

2 LDR R6 R5 R1

3 STR R6 R4 R1

10

The PUSH and POP instructions are used to handle the program stack, that is
the collection of activation records for all functions that are active at the same
time, as a result of nested function calls. We will study the behaviour of these
instructions together with that of the branch instructions used to perform the
function invocation and return in greater details in the next section.

3.4 The Global Data Section

Any program sees a memory space reserved to it. This memory space can be
used to hold data: for example, we may have global scalar variables, strings,
arrays, or matrices.

To reserve space in the global data memory, we just need to give the as-
sembler enough information on the size of the memory space needed, as well as
the initialization values. Directives .int, .byte, .float, .string respectively
reserve memory for a 32-bit integer, 8-bit integer, 32-bit floating point number,
and a zero-terminated string (the size of the string is one byte per character,
plus one for the terminating zero).

We can use the load (and store) instructions to access such data. The fol-
lowing example loads and returns a value from a global variable x.

1 .arm /* An ARM 32-bit program */

2 .data

3 x: .int 42 /* A global variable named x */

4 s: .string "hello , world!"

5 .text /* Start of the program code section */

6 .global main /* declares the main identifier */

7 .type main , %function

8 main: /* Address of the main function */

9 MOV R1 x /* Load address x */

10 LDR R0 R1 #0 /* Load data from x */

11 BX LR /* Return to the caller */

12 .end /* End of the program */

A second example loads and returns the second character from a global string
s.

1 .arm /* An ARM 32-bit program */

2 .data

3 s: .string "hello , world!"

4 .text /* Start of the program code section */

5 .global main /* declares the main identifier */

6 .type main , %function

7 main: /* Address of the main function */

8 MOV R1 s /* Load address s */

9 LDRB R0 R1 #1 /* Load second character of s */

10 BX LR /* Return to the caller */

11 .end /* End of the program */

Note that global variables are accessed through the memory address of the
first byte of storage they use.

11

4 Function Invocation and Return

Understanding the working of function invocation and return from function are
critical to understanding how programming languages are implemented. To this
end, we need to study the implementation details at the assembly level, since
most, if not all, high level programming languages hide such details from the
programmer.

Thus, let us go back to the original assembler program template, and add a
function call to it.

1 .arm /* Specify this is an ARM 32-bit program */

2 .text /* Start of the program code section */

3 .global main /* declares the main identifier */

4 .type main , %function

5 main: /* Address of the main function */

6 BL factorial /* A function call! */

7 BX LR /* Return to the caller */

8 .end /* End of the program */

The code above relies on a new function, factorial, which we will need
to implement. We have, on the other hand, already seen that parameters are
passed through R0, so the corresponding C program would be the following:

1 int factorial(int x){

2 int y;

3 for(y=1; x>0; x--) y*=x;

4 return y;

5 }

6

7 int main(int argc){

8 return argc;

9 }

In this example, main is the caller function, while factorial is the callee.
Since we already have a code fragment that computes the factorial (see

Section 3.2.2), translated into assembly, and we have already seen that R0 is
used to pass a single integer parameter, as well as to pass back the result value,
we only need to make sure that parameter x is correctly looked for in R0.

The following program results:

1 .arm /* Specify this is an ARM 32-bit program */

2 .text /* Start of the program code section */

3 .global factorial

4 .type factorial , %function

5 factorial: /* Address of the main function */

6 MOV R5 #1 /* y=1; */

7 loop : CMP R0 #0 /* we need to check x>0 */

8 BLE end /* if (!(x>0)) end the loop */

9 MUL R6 R5 R0 /* tmp=y*x; */

10 MOV R5 R6 /* y=tmp; */

11 SUB R0 R0 #1 /* x=x-1; */

12 B loop /* loop back to condition */

13 end : MOV R0 R5 /* R0 is the return value */

12

14 BX LR /* return from function */

15

16 .global main /* declares the main identifier */

17 .type main , %function

18 main: /* Address of the main function */

19 BL factorial /* A function call! */

20 BX LR /* Return to the caller */

21 .end /* End of the program */

4.1 Runtime Architecture

For more complex functions, just having R0 is not sufficient, and we need a
better understanding of parameter passing in ARM.

The convention for parameter passing in the Runtime Architecture for the
ARM processor family 7 is that the first four word-sized parameters are stored
in registers R0-R3 by the caller function. The remaining parameters will be
stored in memory. Since the R0-R3 registers contain values that are prepared by
the caller function for the callee, the caller function should save the values of
those registers, which may be changed by the callee. On the contrary, all other
register values must be preserved by the callee, so if the callee function needs
more than four registers, it should save the register values before using them!

Overall, the following table shows the role of each register in a function call:
Register Usage Saved by
R0 First argument & Return value Caller
R1 Second argument Caller
R2 Third argument Caller
R3 Fourth argument Caller
R4 Local variable 1 Callee
R5 Local variable 2 Callee
R6 Local variable 3 Callee
R7 Local variable 4 Callee
R8 Local variable 5 Callee
R9 Local variable 6 Callee
R10 Local variable 7 Callee
R11 Local variable 8 Callee
R12 Linker register (IP) Caller
R13 Stack Pointer (SP) Callee
R14 Link Register (LR) Callee
R15 Program Counter (PC) Special

Note that the Program Counter, Stack Pointer and Link Register all have a
special role in function calls.

• The Program Counter is changed by both the caller (to the address of the
first instruction of the callee) and then by the callee (to the value passed
by the caller in the Link Register).

• The Link Register is set by the caller, and must be preserved by the callee,
which will use it at its return, as mentioned above.

7In the ARM context, this is known as the ARM Application Binary Interface, or ABI

13

• The Stack Pointer is used to handle free memory, and avoid that the callee
overwrites data in memory that is needed by the caller. It can be changed
by the callee, but needs to be restored before returning to the caller.

Finally, R12 may be used by the linker between the caller and the callee. We
will not delve into this issue, except to note that the value of R12 must be saved
by the caller.

With this new information, we know understand that our factorial func-
tion is not well-defined: it uses registers that are supposed to be callee-save
without actually saving them. We therefore need to find some place in mem-
ory where we can save the contents of those registers, and restore them before
returning to main.

We could try to use the .data section, that is the global memory, but we
need to reserve space there when we assemble the program, and there we may
not know how many function calls will be active at the same time, and therefore
how much space we will need.

4.2 The Program Stack

To address the need to hold callee-saved values, as well as local variables and
arguments in excess of the registers, the Runtime Architecture includes a Pro-
gram Stack, that is an area of memory that, for each function invocation, is
guaranteed to be used up to a certain address (stored in the Stack Pointer reg-
ister, R13), and free from that address up. The Program Stack is managed in a
descending way, that is the free memory is found at lower memory address than
the Stack Pointer address.

To work with the Program Stack, we use the PUSH and POP instructions
defined in Section 3.3. The PUSH { registers } instruction will store in the
Program Stack all the operand registers (it can store even the entire register
set) and update the Stack Pointer to reflect the memory used to store those
values.

The POP { registers } instruction does the opposite, restoring the register
values from memory, and freeing the memory by moving back the Stack Pointer
to the original value.

We can modify our factorial program to take into account that registers
R5 and R6 are callee-save.

1 .arm /* Specify this is an ARM 32-bit program */

2 .text /* Start of the program code section */

3 .global factorial

4 .type factorial , %function

5 factorial: /* Address of the main function */

6 PUSH { R5 , R6 } /* Save R5 and R6 , not R0*/

7 MOV R5 #1 /* y=1; */

8 loop : CMP R0 #0 /* we need to check x>0 */

9 BLE end /* if (!(x>0)) end the loop */

10 MUL R6 R5 R0 /* tmp=y*x; */

11 MOV R5 R6 /* y=tmp; */

12 SUB R0 R0 #1 /* x=x-1; */

13 B loop /* loop back to condition */

14 end : MOV R0 R5 /* R0 is the return value */

14

15 POP { R5 , R6 } /* Restore R5 and R6 */

16 BX LR /* return from function */

17

18 .global main /* declares the main identifier */

19 .type main , %function

20 main: /* Address of the main function */

21 BL factorial /* A function call! */

22 BX LR /* Return to the caller */

23 .end /* End of the program */

We do not need to modify main, because we know that the caller saved
registers will not be used by main after returning from the call.

The following figures show how the stack is used in a more visual way:

-

Argument 5

Argument 6

Argument N

Caller Activation Record

SP

-

Argument 5

Argument 6

Argument N

Caller Activation Record

Saved R5

Saved R6

Saved LRSP

-

Argument 5

Argument 6

Argument N

Caller Activation Record

SP

Saved LR (old)

Saved R6 (old)

Saved R5 (old)

(a) (b) (c)
Immediately before the function call (a), the caller function stores any pa-

rameter value (except the first four parameters, which are stored in R0–R3) into
the stack. Assuming the parameters values are held in registers R4–Rn, the
following operation suffices:

1 PUSH { R4 , R5 , ... Rn }

This also updates SP, moving it to the position shown in (a).
Then, after the BL (function call) instruction is executed, the callee function

will store the values of the callee-save registers it needs to use, by performing
a second PUSH operation (PUSH { R5, R6, LR } in the figure), leading to the
stack state shown in (b).

Finally, before completing its execution with the BX LR instruction, the callee
will restore the stack with the reverse operation, POP { R5, R6, LR }, leading
back to (c). Note that the old values are not overwritten, but since SP has been
moved back to its original position, they caller will ignore them.

15

