ALaRI

Software Compilers

CODE GENERATION FOR LLVM
USING THE ACSE COMPILER

Professor:
S. Crespi Reghizzi

Tutors:
Giovanni Agosta

Andrea Di Biagio

Project Authors:
Antonino Battaglia

Nikolaos Christianos

A.A. 2008 /09

CONTENTS

Contents

1 Introduction

2 Low Level Virtual Machine (LLVM)

3 Back-End
3.1 Modifications
3.2 Test — Results
3.3 Notes

4 Front-End Modifications
4.1 Scanner modifications
4.2 Parser modifications

4.3 Declaration of new structs

1 Introduction

The Advanced Compiler System for Education (ACSE) is a compiler designed to
translate source code written in LanCE language into an assembler code for the MACE
architecture. Even though the ACSE is a simple compiler, it provides all the elements to
perfectly understand how a compiler works, since it is able to perform actions such as

create a control flow graph, execute a liveness analysis and make a register allocation.

Due to the fact that the ACSE is hardly restricted to generate code for the MACE
architecture, this project aims to create a modified core for the ACSE compiler, which
will allow to generate code for LLVM. Modifications mainly in the back-end have been
made to reach the goal, but some other modifications in the front-end were used to
extend the initial grammar supported by the parser, and allow the insertion of the
Switch structure and the Break and Continue statements. This report briefly describes
first some hints of the LLVM, then the changes made to the ACSE compiler’s back-end

and front-end, and finally the results obtained with the new compiler.

2 Low Level Virtual Machine (LLVM)

The Low Level Virtual Machine, generally known as LLVM, is a compiler
infrastructure, written in C++ which is designed for compiler-time, link-time, run-time
and "idle-time" optimization of programs written in arbitrary imperative programming

language.

LLVM currently supports the compilation of C, C++, Objective-C, Ada, D and

Fortran programs, using front-ends derived from GNU Compiler Collection (GCC).

Using LLVM, one can create compilers and code generators for specific machine
architectures, and optimizers independent from particular platforms or languages. The
LLVM intermediate representation (IR) is language and architecture independent; it lies
between a language-specific module and a code generator for a specific machine. LLVM

includes aggressive inter-procedural optimization support, static and JIT compilers.

LLVM supports a language-independent instruction set and type system. Most of the
instructions have a form similar to three address code. Each instruction is in static
assignment form (SSA), meaning that each variable (called a typed register) is assigned

once and is frozen. This helps simplify the analysis of dependencies among variables.

LLVM has basic types, like integers of fixed sizes, and exactly five derived: pointers,
arrays, vectors, structures, and functions. A type construct in a concrete language can be
represented by combining these basic types in LLVM. For example, a class in C++ can

be represented by a combination of structures, functions and arrays of function pointers.

C — . -
. Language twvmir | Mid-Level Lwmir Code

ObjC Front-end Optimizer Generator

C/CH+

FORTRAN Gcc

Parsers

5 CIRE T Key LLVM Feature:
IR is small, simple, easy

to understand, and is
Python —= Retarget or write well defined
JavaScript —=» parsers for other

—5 languages

3 Back-End

Due to the fact that LLVM instructions significantly differ from those in the MACE
assembler, it was necessary to make a lot of changes in the components of the back-end,
such as axe_gencode, axe_constants, axe_expressions, axe_engine, axe_cflow_graph,

axe_struct and Acse.y.

Basically, the work involved to remove incompatible instructions, change the name to
some other instructions, add some new ones, and modify the addressing modes in

others.

3.1 Modifications

Significative changes were made inside the gencode file, where we added our new
instructions, so as to perform compare with and without immediate, respectively
constructed as binary and ternary instructions. Below there are two examples of the

format of these two type of instructions we added:

t_axe_instruction * gen_icmp EQi instruction (t_program infos *program,
int r_dest, int r_sourcel, int immediate)
{
return gen_binary_ instruction
(program, CEQI, r_dest, r_sourcel, immediate);
}
t_axe_instruction * gen icmp_ EQ instruction (t_program_infos *program,
int r _dest, int r_sourcel, int r_source2, int flags)

{
return gen_ternary_instruction

(program, CEQ, r _dest, r_sourcel, r source2, flags);

In the file axe_constants.h we defined the identifiers for the new instructions we
added for compare instructions.

More tasks had to be done for do-while, while and if statements which require
particular compare instructions and, above all, only conditional jump instructions with
two labels for true and false conditions. MACE assembler doesn't support conditional
branches with two labels, so modifications to file axe_expression.c, Acse.y, axe_struct.h

and axe_struct.c were needed to represent LLVM format.

In axe_expressions.c we modified the perform_binary_comparison() function in
such a way that we replaced the sub/subi instructions with our appropriate compare

instructions. Considering only the case with one immediate operand we have :

switch(condition)
{
case _LT : gen_icmp LTi instruction (program, output_register,
expl.value, exp2.value); break;
case _GT_ : gen_icmp GTi_instruction (program, output_register,
expl.value, exp2.value); break;
case _EQ : gen_icmp EQi instruction (program, output_register,
expl.value, exp2.value); break;
case NOTEQ : gen_icmp NEQi instruction (program, output_register,

expl.value, exp2.value); break;
case _LTEQ : gen_icmp LEi_ instruction (program, output register,
expl.value, exp2.value); break;
case _GTEQ : gen_icmp GEi_instruction (program, output register,
expl.value, exp2.value); break;
default :

notifyError (AXE_INVALID EXPRESSION);

In the files axe_struct.h and axe_struct.c we added two more structs, the
do_statement and the if_statement, so as to create the appropriate labels for do-while
and if structures.

Some modifications were made in the parser Acse.y, so as to create labels and place
them in the correct point of the code and also to acquire the needed labels for the LLVM

format.

An example of if-else statement can be seen in the following code:

Value* RO = builder.CreateICmpEQ(R1, R2, "RO");

builder.CreateCondBr (RO, L1, L2);

builder.SetInsertPoint ("L1");

builder.CreateBr(L3);

builder.SetInsertPoint ("L2");

builder.SetInsertPoint ("L3");

Finally in axe_engine.c we changed almost the whole translateCodeSegment()

function in order to print the output according to the LLVM format, depending of the

instruction we had to print.

3.2 Test - Results

In order to complete the program structure we have to attach the following LLVM

code, to include the necessary libraries and to perform some standard steps, which are

fixed for every LLVM program.

#include
#include
#include
#include
#include
#include
#include

<llvm/Module.h>
<llvm/Function.h>
<llvm/PassManager.h>
<llvm/CallingConv.h>

<llvm/Analysis/Verifier.h>
<llvm/Assembly/PrintModulePass.h>
<1llvm/Support/IRBuilder.h>

using namespace llvm;

Module* makeLLVMModule();

int main(int argc, char**argv) {
Module* Mod = makeLLVMModule();
verifyModule (*Mod, PrintMessageAction);

PassManager PM;

PM.add(new PrintModulePass(&llvm::cout));

PM.run(*Mod) ;
delete Mod;

return

}

In order to prove the correctness of code implemented

states some representative aspects of code generation.

int value, result, power, negative;

0;

, we provide an example that

Source Code : power.src

read(value);
read (power);

if (power == 0)

{

}

write(0);
return;

if (power < 0)

{

}

else

negative = 1;
power = -power;

negative = 0;

result = value;

while (power > 1)

{
result = result * value;
power = power - 1;

}

if (negative == 1)

result = 1 / result;

write(result);

Output Code : power.asm

builder.CreateAlloca(int, *LO);
builder.CreateAlloca(int, *L1);
builder.CreateAlloca(int, *L2);
builder.CreateAlloca(int, *L3);

R1 = builder.CreateCall(func_scanf, Attrs.begin(), Attrs.end(),
"",label entry);

Value* R1 = builder.CreateStore(LO);

R2 = builder.CreateCall(func_scanf, Attrs.begin(), Attrs.end(),
"",label entry);

Value* RO = builder.CreateICmpEQ(R2, #0, "RO");

Value* R2 = builder.CreateStore(L2);

builder.CreateCondBr (RO, L5, L4);

builder.SetInsertPoint ("L5");

Value* R3 = builder.CreateAdd(RO, #0, "R3");

R3 = builder.CreateCall(func_printf, Attrs.begin(), Attrs.end(),
"",label entry);

builder.CreateRet();

builder.SetInsertPoint ("L4");

Value* R2 = builder.CreateLoad(L2);

Value* RO = builder.CreateICmpULE(R2, #0, "R0");
Value* R2 = builder.CreateStore(L2);
builder.CreateCondBr (RO, L7, L6);

builder.SetInsertPoint ("L7");

Value* R3 = builder.CreateAdd(RO, #1, "R3");
Value* R3 = builder.CreateStore(L3);

Value* R2 builder.CreateLoad(L2);

Value* R4 = builder.CreateSub(R0O, R2, "R4");
Value* R2 = builder.CreateAdd(RO, R4, "R2");
Value* R2 = builder.CreateStore(L2);
builder.CreateBr (L8);

builder.SetInsertPoint ("L6");
Value* R3 = builder.CreateAdd(RO, #0, "R3");
Value* R3 = builder.CreateStore(L3);

builder.SetInsertPoint ("L8");
Value* R1 = builder.CreateLoad(LO);

Value* R4 = builder.CreateAdd(R0O, R1, "R4");
Value* R4 = builder.CreateStore(Ll1);
Value* R1 = builder.CreateStore(LO);

builder.SetInsertPoint ("L9");

Value* R2 = builder.CreateLoad(L2);

Value* RO = builder.CreateICmpUGE(R2, #1, "RO");
Value* R2 = builder.CreateStore(L2);
builder.CreateCondBr (RO, L11, L10);

builder.SetInsertPoint ("L11");

Value* R4 = builder.CreateLoad(Ll);

Value* R1 = builder.CreateLoad(LO);

Value* R5 = builder.CreateMul (R4, R1, "R5");
Value* R1 = builder.CreateStore(LO);

Value* R4 = builder.CreateAdd(R0O, R5, "R4");
Value* R4 = builder.CreateStore(Ll1);

Value* R2 = builder.CreateLoad(L2);

Value* R5 = builder.CreateSub(R2, #1, "R5");
Value* R2 = builder.CreateAdd(R0O, R5, "R2");
Value* R2 = builder.CreateStore(L2);
builder.CreateBr(L9);

builder.SetInsertPoint ("L10");
Value* R3 = builder.CreateLoad(L3);

Value* RO = builder.CreateICmpEQ(R3, #1, "RO");
Value* R3 = builder.CreateStore(L3);
builder.CreateCondBr (RO, L13, L12);

builder.SetInsertPoint ("L13");
Value* R3 = builder.CreateAdd(RO, #1, "R3");

Value* R4 = builder.CreateLoad(Ll);

Value* R2 = builder.CreateSdiv(R3, R4, "R2");
Value* R4 = builder.CreateAdd(RO, R2, "R4");
Value* R4 = builder.CreateStore(Ll);

builder.SetInsertPoint ("L12");

Value* R4 = builder.CreateLoad(Ll);

R4 = builder.CreateCall(func_printf, Attrs.begin(), Attrs.end(),
"",label_entry);

Value* R4 = builder.CreateStore(Ll);

builder.CreateRet();

3.3 Notes

Due to the few documentations found about C++ API it's not so clear how arrays are
represented and, above all, how operations involving array elements must be indicated.

To perform this task we have to modify axe_array and to implement some new
instructions to extract all the parameters we need, such as the label related to the array,
the index with which it's possible to access to the particular element of the array, and so

on.

4 Front-end Modifications

In that part of the project he had to make some modifications at the front-end part of
the ACSE compiler, so as to support the SWITCH statement and moreover the BREAK/
CONTINUE constructs. In order to implement the points mentioned above we had to
modify the scanner (Acse.lex) and the parser (Acse.y) and two more files from the

ACSE compiler (axe_struct.h and axe_struct.c).

4.1 Scanner Modifications

The only modifications we made in the Acse.lex file was to add in the tokens section
the following tokens: SWITCH, CASE, BREAK, DEFAULT and CONTINUE, so as the

scanner to be able to identify these tokens.

4.2 Parser Modifications

In this part we made the most important modifications for the front-end part of the
ACSE compiler. The first thing was to declare two variables (varl, var2) that they are
going to keep the values of the register is used to keep the variable indicated inside the
switch block. We also declare one variable (switch_end) so as to keep track of the label
at the end of the switch block, another variable (case_begin) to keep track of the label at
the beginning of the case and finally one more variable (next_iter) to keep track of the
label at the beginning of the next iteration.

int varl, var2;
t_axe_label *switch_end;

t axe label *case begin;
t axe label *next iter;

The next that we had to do was to change the semantic records, in order to add the

switch and the do statements.

t switch statement switch stmt;
t do statement do_stmt;

After that we insert at the tokens section our new token and we also change the token
do from <label> to <do_stmt> so as to add the appropriate instructions in order to

support the BREAK and the CONTINUE constructs.

stoken <do stmt> DO

/*New tokens*/

stoken <switch stmt> SWITCH
%token <label> CASE

%token <label> BREAK

%token <label> DEFAULT
%token <label> CONTINUE

After all the previous declarations we had to modify the syntactic rules section. First

we declare the CASE, BREAK, DEFAULT and CONTINUE constructs.

| CASE exp COLON
{

int index, location;

$1 = reservelLabel(program);
case _begin = $1;

/*Generation of 2 registers*/
index = getNewRegister(program);
location = getNewRegister(program);
/*Comparison*/
gen_addi_instruction(program, location, REG 0, $2.value);
gen sub _instruction(program, index, location, var2,CG DIRECT ALL);
gen sne_instruction(program, index);
gen beq instruction(program, $1, 0);
}
| DEFAULT COLON
{/* We reserve the label when the first instrunction occurs */
$1 = reservelLabel(program);
/* We load the label so as to pass it
to the fix level in the break definition. */
case _begin = $1;
}
| BREAK SEMI
{ /* We insert a BRANCH at the end of the switch block */
gen bt instruction (program, switch end, 0);
fixLabel(program, case begin);
}
| CONTINUE SEMI
{
/* We insert a proper BRANCH so as to start the new iteration */
gen bt instruction (program, next iter, 0);

}

Then we have declared the switch_statement in the control_statements list.

control statement : if statement { /* does nothing */ }
| do while statement SEMI { /* does nothing */ }
| while statement { /* does nothing */ }
| switch statement { /* does nothing */ }
|

return_statement SEMI { /* does nothing */ }

The next thing that we had to was to introduce the BREAK and the CONTINUE to
the while_statement.
next iter = $1.label condition;
switch end = $1.1label end;

At this point we had to implement the SWITCH statement, the implementation is

shown below:

switch_statement : SWITCH LPAR IDENTIFIER RPAR
{

/* initialize the value of the non-terminal */
$1 = create switch statement();

/* this label points at the beggining of the switch statement*/
$1.1label condition = assignNewlLabel(program);
fixLabel(program, $1.label condition);

/* this label points at the first instruction after the switch statement*/
$1.label end = reservelLabel(program);

/* this label is used for the identification of the break */
switch end = $1.label end;

/* we genarate 1 register, so as to keep the value inside
the switch condition, and we use a second one, REG 0, which is 0 */
var2 = getNewRegister(program);
varl = get symbol location(program, $3, 0);
gen_add_instruction(program, var2, varl, REG_0, CG_DIRECT ALL);

code block

{
fixLabel(program, $1.label end);

In order to finish with the modifications in the Acse.y we also had to make some
changes in the do_while_statement part so as to support the BREAK and CONTINUE
constructs, as we did in the while_statement, and one last modification at the if stmt so

as to support the BREAK construct, with the same procedure as before.

4.3 Declaration of new structs

The last thing that we had to change in the front-end was the files axe_struct.h and
axe_struct.c. In the first file we have declared the structs for the switch, do and if

statements.

typedef struct t switch statement
{
t_axe_label *label condition; /* this label points to the expression
* that 1is used as loop condition */
t_axe_label *label _end; /* this label points to the instruction
* that follows the while construct */
} t switch statement;

/* We declare the struct of the do statement */

typedef struct t_do_statement
{

t_axe_label *label condition; /* this label points to the expression
* that 1is used as loop condition */
t_axe_label *label _end; /* this label points to the instruction
* that follows the while construct */
t _axe label *label begin;

} t do statement;
/* We declare the struct of the if statement */
typedef struct t_if statement
{
t_axe_label *label _end; /* this label points to the instruction
* that follows the while construct */

t _axe label *label begin;

} t if statement;

In the axe_struct.c file we have created and initialized the structs they declared above.

