ILDJIT: a parallel dynamic compiler

Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi
Politecnico di Milano
{campanoni,agosta,cre$elet.polimi.it

Abstract—Multi-core technology is being employed in most compilers, and it is not a priori known which of them are more
recent high-performance architectures. Such architectures @ed effective in a dynamic setting, we decided to design separat
Sp‘fc'ft'?f’l‘.ltly de?|tghnedhmttjjltl-threade(1| Sl."ftware to exploit all the gntimizers as processes running on a common intermediate
potentialities O elr haraware parallelism. . . .

At the same time, object code virtualization technologies are represemat'on' Third, the DTO softwf':lre architecture ough
achieving a growing popularity, as they allow higher levels of t0 be flexible and open to an unpredictable number of new
software portability and reuse. . ~modules, as the project progresses and experience tells us

Thus, a virtual execution environment running on a multi- which optimizations are productive for which applications
core processor has to run complex, high-level applications and njoreover flexibility is needed to choose the most performing

to exploit as much as possible the underlying parallel hardware. s : ; ;
We ppropose an appré)ach that Ieverage)s/ c?anMP features to Solution from a set of alternative algorithms, dependinghen

expose a novel pipeline synchronization model for the internal application profile and needs: an example is garbage ciolfect
threads of the dynamic compiler. _ ~ for dynamic memory allocation, where our system has four
Thanks to compilation latency masking effect of the pipeline supports to automatically choose from. To obtain flexipilit

orgagizatiton, ou:jdynaraiclggmpiler, ”—DJ'T)lx i?t'hab'e to atCTth% and modularity most DTO modules should be implemented as
signiticant speeaups . on average) wi respec (0] e : H

baseline, when the underlying hardware exposes at least two exlter?ha_ll modules Ioadab_:je at “‘”“”?e (plugl_rl;s)._ the def
cores. n this paper, we provide two major contributions: the def-

inition and experimental evaluation of a parallel compiiat
I. INTRODUCTION and optimization model. The second one is the definition of
Dynamic translators and optimizers (DTGsare nowadays an execution model for a DTO for the widespread Common
the “established way to provide object code compatibiliftermediate Language (CIL), the directly interpretabdg-r
between different architectural platform, as well as ioper fesentation of the Common Language Infrastructure (CLI),
erab|||ty between different h|gh level |anguages_ standardized as ECMA 335 .and- ISO/IEC 23271:2006 [7]
Most works in the field have targeted traditional singlelhe current name of the project is ILDJIT. One could fear
processor and single-core architectures. However, moitipthat a compiler implemented as a distributed and dynargicall
cessor architectures are becoming the most viable way liffable program would have to pay a high overhead, to the
improve performance, since increasing the clock frequenk@int that the benefit from hardware parallelism might beetff
leads to unacceptable power consumption and manufacturfigecially for a small number of processors. On the contrary
cost growths [4]. Thus, this paper focuses on obtainingérghPur experiments show that the performance of applications
performances in DTOs on parallel architecture. It is obgiolfompiled by our DTO are comparable to some of the best
that on a computer with more processors than applicati§Rown dynamic compilers, on a single processor machine, and
threads, the DTO can run uninterrupted on a processor, $4perior on multi processor platforms. _ _
that many compilation/application balancing problemsnfibu ~ The paper is organized as follows. In Section Il we outline
on single processor machine simply disappear. According tfg execution model of ILDJIT dynamic compiler. In Sec-
Kulkarny et al. [9]: tion 11l we report the experiments and how they allowed us to

little is known about changes needed in balanc- tune performances and improve on the overall DTO structure.
ing policy tuned on single-processor machines to Some benchmarks are compared with other CIL systems. The
optimize performances on multi-processor platforms. conclusion lists on going developments and future plans.

...it is a common perception that the controller

could (and should) make more aggressive optimiza- Il. EXECUTION MODEL

tion decision to make use of the available free cycles. ILDJIT implements the Virtual Execution System (VES)
Aggressiveness in this context can imply compiling leveraging on a Just-In-Time compiler for obvious perfor-
early, or compiling at higher optimization levels. mance reasons. The primary task is to translate each piece

We shared the same intuition, and, in order to take fudif CIL bytecode to a semantically equivalent target code to

advantage of the high degree of parallelism of future ptatfy be directly executed by the hardware; ILDJIT adopts an inter

we designed the DTO itself as a parallel distributed programmediate representation called IR to support this tramsiati
Compiler parallelism is manifold. First, the compiler pess

are organized as a pipeline so that several CIL methods danTranslation unit and Intermediate representation

be simultaneously compiled by different compilation pt&ase choosing the correct granularity for the translation pssce

Second, since many kinds of optimizations are applied iticsta;g especially important in a dynamic compiler [6]. We have
1This work is supported in part by the European Commission undChOS-en -the method as -tranSIatlon unlt'- ILDJI-T can opt|m_|ze

Framework program‘?f]’e 7 Openﬁ’vlediayplaﬁorm pr%ject Srppllcatu_)n code over different processing units (PU), aluhi
2We refer to the classification and terminology for dynamic cdesgi COMMuNicate using communication channels like shared mem-

proposed by Rau [11] and Duesterwald [6] ory or TCP/IP. To this end, ILDJIT must sometimes move

code across different PUs which may be connected through
slow communication channels.

To minimize the communication costs, we have designed
our own intermediate representation (IR), with the follogyi —
goals: first, to provide a compact representation of indiald U Translator

methods (CIL offers a compact representation of the whole
program, but spreads information related to each method
across the assembly); second, to offer a machine-neutral,
register-based language, such that each construct hasra cle

IR state

IR
Optimizations

and simple meaning. IR instructions are composed by pseudo (o) [e
assembly instructions (e.g. IRADD, IRSUB ...) and by pseudo =
object oriented bytecode (e.g. IRNEWOBJ). By this way many

optimization algorithms that aim to compute static projgsrt Transration

of the program are helped (e.g. memory alias analyzers).

Translation is therefore split in two phases: first the CIL ﬁ
| P itatzation”

fragment is translated into IR, then IR is translated inte th

target machine code. Since the entire program is not trimusla
to target code at once, every dynamic compiler has the fol-
lowing linking problem: how to handle invocations of metisod |
not yet translated. ILDJIT resolves the linking problem by a

lazy compilation [8] implementing th&olines Fig. 1. The translation pipeline model: on the left, the tratisn pipeline
stages; on the right, the modules that implement the variogestan the
B. Compilation pipeline rounded boxes the state of the method code at the beginningcbf stage.

) o) 'Each method can be in the following non-overlappiranslation statesCIL,
Translations, optimization and execution of CIL code iR, MACHINECODE and EXECUTABLE. A method is i€IL statg if it is

i i i i i esent only in the CIL language; otherwise, if a method isheIR state
managed by an 'T‘tema' so_ftware pipeline, (_:ie5|gned tO_ qXPI?is present both in CIL language and in IR. MACHINECODE statea
hardware parallelism at various levels. To this end, comtioih method is present in CIL, IR, and in the target machine codeallyinin
and execution phases are performed in parallel. Moreo\BXECUTABLE state, the method is present in CIL, IR, and mactuode
ILDJIT exploits pipeline parallelism, to add another dimenand all the static memory used by it is allocated and initigliseo change

- . S NN its translation state, a method traverses the softwareipéel
sion of parallelism between compilation, optimisationsd a
execution phases. In traditional Just-In-Time compilerdsen
execution jumps to a method not yet available in machine
code, it pauses and translates it. Our dynamic compiler,
given sufficient hardware resources, can produce methods in
machine code before execution of the CIL program asks for
them. In this case, program execution does not need to be
paused to switch to compilation; the execution profile masch

that of a statically compiled program in the optimal case.

The pipeline model exposes five stages as shown in Figure 1;

All stages can be parallelized, if hardware resources are: ;] orom | sesee] LR
available. Each pipeline stage can be performed by several >|—,—} M
parallel threads, possibly running on different PUs’, inlar | EFTEETERE Pleeee - - -
to simultaneously translate several CIL code pieces to IR.
Similarly several translation steps from IR to machine code |
may run in parallel. The pipeline model is implemented by
the Pipeliner module. |
The pipeline model is organized into the four thread groups !
depicted in Figure 2. Each group implements one of the first : e '

CIL manager

Optimizer

four stages of the pipeline (Figure 1). !
At any time, the number of threads composing each stage.

of the pipeline is adaptively chosen, based on the current:

machine load where ILDJIT is running, and on the pending .

compilation workload to be supported. For each stage of the:

pipeline (except stage 4, static memory initializatiofet |

number of threads range between a minimum and a maximum;

such values are set at bootstrap time. Then the Pipeliner-=*"-3------=#%-------

dynamically adapts the number of threads for a stage useng th —

histeretic model shown in Figure 3. The number of threads for

stagei, 1 <17 < 3 essentially depends on how many methodsg. 2. The Pipeliner’s structure: in the middle four groupbaxes represent
are present in the stages from 1ito four groups of threads, each one assigned to a compilati&n dasthe right,

On the other hand Stage 4 of the pipeline behaves differenfl§ Medules that implement the various compilation tasks
from the others, because limiting the number of threads may
cause a deadlock. A situation that causes a deadlock is the

! Static memorn
15tatic memory . Initislize Y

initializer

\J FIFO channel
—
b:‘:l:m, _cet _ S‘tat\c memory
initialization thread
1
1
1

Java Grande Benchmarks

Mono [Portable NET ILDJIT {1 PU) EILDJIT (2 PUs)

Methods number
in the pipe between
stageiandj

E

|
|
|
|
>

Threads number
I of the stage j 8

Minimum Maximum I
I threshold threshold

Time (in seconds)

Fig. 3. Histeretic pattern used for adaptation of thread remnb

A)

e %

fppzzz A

[

N
\
N
Y
\
\
\
\
\
N
\
\
\
N

following: we consider a maximum number of threaggor
stage 4, we suppose there exist+ 1 CIL methods which
initialise the static memory and we suppose the call graph
the S + 1 CIL methods is a linear chain. To better explair
why a deadlock exist, here is reported the actions perform
by the system: ILDJIT starts putting the methaf} into the
:Iorﬁegf the plpellne and then repeats the foIIowmg actiéns Fig. 4. Total execution 'time of the JGrande benchmarks run bydylo
: Portable.NET and ILDJIT; the speedup of ILDJIT in the 2 PUsdare
« the methodM; goes through the pipeline till the staticconfiguration is due to the compilation phase overlappingedmnthe VM
memory initialization phase;

« athread of the fourth phase of the pipeline is allocated for
executing all the methods needed to initialize the statimplementations. ILDJIT results are provided for both ayin

memory used by/;; PU and two PUs machine — the other VMs do not get any
M; uses a static memory which impose to execute tlaglvantage by running on a two PUs machine.

method M, ., before its execution; Since ILDJIT uses the same code generation and core
the method);,; is push on top of the pipeline syn-libraries as Portable.NET, it can be seen that the overhead
chronously (it means thread waits the end of the of its multi-threaded architecture is limited, as ILDJIwals
compilation/execution of method/; ,1); outperforms Portable.NET. On the other hand, Mono is faster

When ILDJIT put on top of the pipe the methdds,, then due to the limitations of the code ‘generator — the native
there is no more thread at the fourth stage. As the abowede produced by ILDJIT is very similar to that produced
example shows, we cannot bind the number of threads of # Portable.NET (though slightly smaller due to high-level
last stage of the software pipeline; for this reason we attosy Optimization), and both only produce a simple code not tuned

number of these threads increase as much as the compilatrhe specific Intel instruction set, while Mono can rely on
a much more advanced code generator. However, overlapping

workload request.
L computation and compilation in the two PUs setting allows

C. Optimizations ILDJIT to achieve an average speedup of 1.183, which brings

ILDJIT allows optimizations both at IR and target codédt performance on par with those of Mono.
level. The rationale is based on the observation that all theHere we present a breakdown of the execution time of the
semantic information of the source program is availabldava Grande benchmarks among the various phases of the
higher-level transformation are easier to apply. For imsta compilation and execution. As Figure 5 shows, on a single
array references are clearly distinguishable, insteadeimfgoa processor machine ILDJIT already spends most of the time
sequence of low-level address calculations [2]. executing target machine code, but a significant part of the

Since different algorithms for code optimization use arti time is spent optimising the IR methods. It is notable that
ular features of the underlying hardware, ILDJIT can opsieni the translation between IR and machine code is extremely
the code that is going to be executed at the IR level, makifast (less than 0.1% of the execution time) — thus, we can
a translation from and to the IR language, and at the targety that the intermediate representation does a good job in
machine code level, making a translation from and to thestargillowing most of the translation to be performed at a machine
machine code. IR to IR optimizers run as independent threaddependent level. On the other hand, Figure 6 shows that two
possibly on different PUs’, or even on different machineBUs are sufficient to overlap the translation time for theaJav
connected by an IP network. Grande benchmark suite. Basically, the user does not percei

any compilation overhead.
IIl. EXPERIMENTAL EVALUATION

To compare the baseline ILDJIT system against its main IV. RELATED WORK
competitors, Mono and Portable.NET, we have chosen theDue to the considerable impact of the Microsoft “.NET"
C# version of the well-known benchmark suitava Grande initiative, several projects aimed at VES implementation.
Forum Benchmark Suitfl0]. Figures 4 report the execution Microsoft itself released three implementations of VE® th
times of the selected benchmarks running on the three VB$ET framework (for desktop environments), the Compact

JGFArith
JGFCast
JGFAssign
JGFheapsort
JGFFFT

JGFSparseMatmult %

JGFRayTracerBench

Java Grande
100.00%

95.00%
90.00%
85.00%
80.00% |
75.00%
70.00% |

o 6500% 1

E 60.00%

@ 55.00% |

o

S 50.00%

JGFArith
JGFLoop
JGFCast

JGFFFT

g
£
£
&
&
B

JGFAssign
JGFheapsort

[JExecution
[JIR->Machine code translation
MR optimizations

CIL->IR translation

JGFSparseMatmult

Fig. 5. Time spent by ILDJIT over the compilation, optimizatiamd
execution phases using a single PU; the translation fronoIRdchine code
is less than 0.1%

Java Grande
100.0%

95.0% 1|
90.0% 1|
85.0% 1|
80.0% 1|
75.0% 1|
70.0% 4|
65.0% 1|
50.0% 1|

o 55.0%

£ s00%

[%

@, 45.0%

& 40.0%

& 3500

@ 35.0%

o

@ 30.0%
25.0% 1
20.0% 4|
15.0%
10.0% 4

5.0%
0.0% T T

[Execution
M R optimizations

Fig. 6. Time spent by ILDJIT over the compilation, optimizatiamd
execution phases using two PUs; the translation phasegssdHan 0.4%

JGFATith
JGFLoop
JGFCast
JGFAssign
JGFheapsort
JGFFFT
JGFRayTracer

JGFSparssMatmult

IBM’s J9 [13] as well as in Intel's ORP [3] virtual machines
there are parallel threads to perform code compilation and
execution tasks.

We believe the structure ILDJIT to be rather distinct from
such projects, and its use of parallelism and continuous
optimization to be more aggressive.

V. CONCLUSIONS AND FUTURE WORK

The work described is an important step towards exploita-
tion of parallel dynamic compilation for parallel architees
such as the multi-core processors. The experiments reporte
albeit initial, give evidence of the advantages in terms of
reduction of initial delay and execution speed. Moreover
since ILDJIT is a young system, we expect forthcoming
releases will perform significantly better. ILDJIT is desagl
on a pipeline model for the translation and execution of CIL
programs, where each stage (CIL/IR translation, optirfonat
IR/native translation, and execution) can be performed on a
different processor. This choice brings a great potental f
continuous and phase-aware optimization in the domain of
server applications, as well as fast reaction times andtafée
compilation on embedded multiprocessor systems.

Several interesting directions are open for future researc
An important future direction for research is the study of
scheduling policies for method optimization and the study
of different threads schedule policies. Another objects/¢éo
apply ILDJIT to multimedia application on embedded systems
including performance scaling and resource management.

REFERENCES

Bea jrockit: Java for the enterprise technical white g@2006.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Campil
transformations for high-performance computid®CM Comput. Sury.
26(4):345-420, 1994.

Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, addmes
Stichnoth. The open runtime platform: a flexible high-perfoncea
managed runtime environment: Research artici&sncurr. Comput. :
Pract. Exper. 17(5-6):617-637, 2005.

Marco Cornero, Roberto Costa, Ricardo Fardez Pascual, Andrea C.
Ornstein, and Erven Rohou. An experimental environment agiid
the suitability of cli as an effective deployment format for exdted
systems. In Per Stenétn, Michel Dubois, Manolis Katevenis, Rajiv
Gupta, and Theo Ungerer, editotdiPEAC, volume 4917 ofLecture
Notes in Computer Sciencpages 130-144. Springer, 2008.

Miguel de Icaza, Paolo Molaro, and Dietmar Maurer. htipyw.go-
mono.com/docs. Mono documentation.

Evelyn Duesterwald. Dynamic compilation. In Y.N. Srikasmd Priti
Shankar, editorsThe Compiler Design Handbook — Optimizations and
Machine Code Generatigmpages 739-761. CRC Press, 2003.
ECMA, Rue du Rhone 114 CH-1204 Genev&tandard ECMA-335
Common Language Infrastructure (Cl.Brd edition, June 2005.
Chandra Krintz, David Grove, Vivek Sarkar, and Brad @aldReducing
the overhead of dynamic compilatioBoftw., Pract. Exper31(8):717—

(1]
(2]

(3]

(4]

(5]
(6]

(7]
(8]

Framework (for embedded devices) and Rotor, a “shared-
source” implementation. Mono is an open-source project Iegl
by Novell (formerly by Ximian) [5] to create an ECMA
standard compliant .NET compatible set of tools, including
C# compiler and a Common Language Runtime. Portable.Nlﬁ'g]
is an free software implementation of CLI by Southern
Storm [12]. Its primary design goal is portability to as many
platforms as possible; such goal is achieved through use[ﬂf]
interpretation rather than Just-In-Time compilation atadk
execution method.

In BEA's JRockit [1] virtual machine, methods are compilegh o;
without performing code optimizations for their first exéon;
the compilation is performed by the same thread used to eX&l
cute the application code, but there is a parallel threacthvhi
has the task of sampling the execution, in order to trigger
method recompilation, increasing the optimization leval.

738, 2001.

Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynia compi-
lation: the benefits of early investing. MEE '07: Proceedings of the
3rd international conference on Virtual execution enviments pages
94-104, New York, NY, USA, 2007. ACM.

J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysand
development of java grande benchmarks.JRVA '99: Proceedings of
the ACM 1999 conference on Java Grangages 72—-80, New York,
NY, USA, 1999. ACM.

B. Ramakrishna Rau. Levels of representation of programd the
architecture of universal host machines. NMiCRO 11: Proceedings
of the 11th annual workshop on Microprogrammingages 67-79,
Piscataway, NJ, USA, 1978. IEEE Press.

Southern Storm Software. http://www.southern-steaom.au. DotGNU
Portable .NET project.

Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Maolodey.
Experiences with multi-threading and dynamic class loadin@ java
just-in-time compiler. INCGO '06: Proceedings of the International
Symposium on Code Generation and Optimizatpages 87-97, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

