
ILDJIT: a parallel dynamic compiler
Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi

Politecnico di Milano
{campanoni,agosta,crespi}@elet.polimi.it

Abstract—Multi-core technology is being employed in most
recent high-performance architectures. Such architectures need
specifically designed multi-threaded software to exploit all the
potentialities of their hardware parallelism.

At the same time, object code virtualization technologies are
achieving a growing popularity, as they allow higher levels of
software portability and reuse.

Thus, a virtual execution environment running on a multi-
core processor has to run complex, high-level applications and
to exploit as much as possible the underlying parallel hardware.
We propose an approach that leverages on CMP features to
expose a novel pipeline synchronization model for the internal
threads of the dynamic compiler.

Thanks to compilation latency masking effect of the pipeline
organization, our dynamic compiler, ILDJIT 1, is able to achieve
significant speedups (1.183 on average) with respect to the
baseline, when the underlying hardware exposes at least two
cores.

I. I NTRODUCTION

Dynamic translators and optimizers (DTOs)2 are nowadays
the established way to provide object code compatibility
between different architectural platform, as well as interop-
erability between different high level languages.

Most works in the field have targeted traditional single-
processor and single-core architectures. However, multipro-
cessor architectures are becoming the most viable way to
improve performance, since increasing the clock frequency
leads to unacceptable power consumption and manufacturing
cost growths [4]. Thus, this paper focuses on obtaining higher
performances in DTOs on parallel architecture. It is obvious
that on a computer with more processors than application
threads, the DTO can run uninterrupted on a processor, so
that many compilation/application balancing problems found
on single processor machine simply disappear. According to
Kulkarny et al. [9]:

little is known about changes needed in balanc-
ing policy tuned on single-processor machines to
optimize performances on multi-processor platforms.
. . . it is a common perception that the controller
could (and should) make more aggressive optimiza-
tion decision to make use of the available free cycles.
Aggressiveness in this context can imply compiling
early, or compiling at higher optimization levels.

We shared the same intuition, and, in order to take full
advantage of the high degree of parallelism of future platforms,
we designed the DTO itself as a parallel distributed program.

Compiler parallelism is manifold. First, the compiler phases
are organized as a pipeline so that several CIL methods can
be simultaneously compiled by different compilation phases.
Second, since many kinds of optimizations are applied in static

1This work is supported in part by the European Commission under
Framework Programme 7, OpenMedia Platform project

2We refer to the classification and terminology for dynamic compilers
proposed by Rau [11] and Duesterwald [6]

compilers, and it is not a priori known which of them are more
effective in a dynamic setting, we decided to design separate
optimizers as processes running on a common intermediate
representation. Third, the DTO software architecture ought
to be flexible and open to an unpredictable number of new
modules, as the project progresses and experience tells us
which optimizations are productive for which applications.
Moreover flexibility is needed to choose the most performing
solution from a set of alternative algorithms, depending onthe
application profile and needs: an example is garbage collection
for dynamic memory allocation, where our system has four
supports to automatically choose from. To obtain flexibility
and modularity most DTO modules should be implemented as
external modules loadable at runtime (plugins).

In this paper, we provide two major contributions: the def-
inition and experimental evaluation of a parallel compilation
and optimization model. The second one is the definition of
an execution model for a DTO for the widespread Common
Intermediate Language (CIL), the directly interpretable rep-
resentation of the Common Language Infrastructure (CLI),
standardized as ECMA 335 and ISO/IEC 23271:2006 [7].
The current name of the project is ILDJIT. One could fear
that a compiler implemented as a distributed and dynamically
linkable program would have to pay a high overhead, to the
point that the benefit from hardware parallelism might be offset
especially for a small number of processors. On the contrary
our experiments show that the performance of applications
compiled by our DTO are comparable to some of the best
known dynamic compilers, on a single processor machine, and
superior on multi processor platforms.

The paper is organized as follows. In Section II we outline
the execution model of ILDJIT dynamic compiler. In Sec-
tion III we report the experiments and how they allowed us to
tune performances and improve on the overall DTO structure.
Some benchmarks are compared with other CIL systems. The
conclusion lists on going developments and future plans.

II. EXECUTION MODEL

ILDJIT implements the Virtual Execution System (VES)
leveraging on a Just-In-Time compiler for obvious perfor-
mance reasons. The primary task is to translate each piece
of CIL bytecode to a semantically equivalent target code to
be directly executed by the hardware; ILDJIT adopts an inter-
mediate representation called IR to support this translation.

A. Translation unit and Intermediate representation

Choosing the correct granularity for the translation process
is especially important in a dynamic compiler [6]. We have
chosen the method as translation unit. ILDJIT can optimize
application code over different processing units (PU), which
communicate using communication channels like shared mem-
ory or TCP/IP. To this end, ILDJIT must sometimes move



code across different PUs which may be connected through
slow communication channels.

To minimize the communication costs, we have designed
our own intermediate representation (IR), with the following
goals: first, to provide a compact representation of individual
methods (CIL offers a compact representation of the whole
program, but spreads information related to each method
across the assembly); second, to offer a machine-neutral,
register-based language, such that each construct has a clear
and simple meaning. IR instructions are composed by pseudo
assembly instructions (e.g. IRADD, IRSUB ...) and by pseudo
object oriented bytecode (e.g. IRNEWOBJ). By this way many
optimization algorithms that aim to compute static properties
of the program are helped (e.g. memory alias analyzers).

Translation is therefore split in two phases: first the CIL
fragment is translated into IR, then IR is translated into the
target machine code. Since the entire program is not translated
to target code at once, every dynamic compiler has the fol-
lowing linking problem: how to handle invocations of methods
not yet translated. ILDJIT resolves the linking problem by a
lazy compilation [8] implementing thetrampolines.

B. Compilation pipeline

Translations, optimization and execution of CIL code is
managed by an internal software pipeline, designed to exploit
hardware parallelism at various levels. To this end, compilation
and execution phases are performed in parallel. Moreover
ILDJIT exploits pipeline parallelism, to add another dimen-
sion of parallelism between compilation, optimisations, and
execution phases. In traditional Just-In-Time compilers,when
execution jumps to a method not yet available in machine
code, it pauses and translates it. Our dynamic compiler,
given sufficient hardware resources, can produce methods in
machine code before execution of the CIL program asks for
them. In this case, program execution does not need to be
paused to switch to compilation; the execution profile matches
that of a statically compiled program in the optimal case.

The pipeline model exposes five stages as shown in Figure 1.
All stages can be parallelized, if hardware resources are
available. Each pipeline stage can be performed by several
parallel threads, possibly running on different PUs’, in order
to simultaneously translate several CIL code pieces to IR.
Similarly several translation steps from IR to machine code
may run in parallel. The pipeline model is implemented by
the Pipeliner module.

The pipeline model is organized into the four thread groups
depicted in Figure 2. Each group implements one of the first
four stages of the pipeline (Figure 1).

At any time, the number of threads composing each stage
of the pipeline is adaptively chosen, based on the current
machine load where ILDJIT is running, and on the pending
compilation workload to be supported. For each stage of the
pipeline (except stage 4, static memory initialization), the
number of threads range between a minimum and a maximum;
such values are set at bootstrap time. Then the Pipeliner
dynamically adapts the number of threads for a stage using the
histeretic model shown in Figure 3. The number of threads for
stagei, 1 ≤ i ≤ 3 essentially depends on how many methods
are present in the stages from 1 toi.

On the other hand Stage 4 of the pipeline behaves differently
from the others, because limiting the number of threads may
cause a deadlock. A situation that causes a deadlock is the

Fig. 1. The translation pipeline model: on the left, the translation pipeline
stages; on the right, the modules that implement the various stages; in the
rounded boxes the state of the method code at the beginning of each stage.
Each method can be in the following non-overlappingtranslation states: CIL,
IR, MACHINECODE and EXECUTABLE. A method is inCIL state, if it is
present only in the CIL language; otherwise, if a method is in the IR state,
it is present both in CIL language and in IR. InMACHINECODE state, a
method is present in CIL, IR, and in the target machine code. Finally in
EXECUTABLE state, the method is present in CIL, IR, and machinecode
and all the static memory used by it is allocated and initialised. To change
its translation state, a method traverses the software pipeline.

Fig. 2. The Pipeliner’s structure: in the middle four groups of boxes represent
four groups of threads, each one assigned to a compilation task; on the right,
the modules that implement the various compilation tasks.



Fig. 3. Histeretic pattern used for adaptation of thread numbers.

following: we consider a maximum number of threadsS for
stage 4, we suppose there existS + 1 CIL methods which
initialise the static memory and we suppose the call graph of
the S + 1 CIL methods is a linear chain. To better explain
why a deadlock exist, here is reported the actions performed
by the system: ILDJIT starts putting the methodM1 into the
top of the pipeline and then repeats the following actionsS
times:

• the methodMi goes through the pipeline till the static
memory initialization phase;

• a thread of the fourth phase of the pipeline is allocated for
executing all the methods needed to initialize the static
memory used byMi;

• Mi uses a static memory which impose to execute the
methodMi+1 before its execution;

• the methodMi+1 is push on top of the pipeline syn-
chronously (it means threadi waits the end of the
compilation/execution of methodMi+1);

When ILDJIT put on top of the pipe the methodMS+1, then
there is no more thread at the fourth stage. As the above
example shows, we cannot bind the number of threads of the
last stage of the software pipeline; for this reason we allowthe
number of these threads increase as much as the compilation
workload request.

C. Optimizations

ILDJIT allows optimizations both at IR and target code
level. The rationale is based on the observation that all the
semantic information of the source program is available,
higher-level transformation are easier to apply. For instance,
array references are clearly distinguishable, instead of being a
sequence of low-level address calculations [2].

Since different algorithms for code optimization use partic-
ular features of the underlying hardware, ILDJIT can optimise
the code that is going to be executed at the IR level, making
a translation from and to the IR language, and at the target
machine code level, making a translation from and to the target
machine code. IR to IR optimizers run as independent threads
possibly on different PUs’, or even on different machines
connected by an IP network.

III. E XPERIMENTAL EVALUATION

To compare the baseline ILDJIT system against its main
competitors, Mono and Portable.NET, we have chosen the
C# version of the well-known benchmark suiteJava Grande
Forum Benchmark Suite[10]. Figures 4 report the execution
times of the selected benchmarks running on the three VES

Fig. 4. Total execution time of the JGrande benchmarks run by Mono,
Portable.NET and ILDJIT; the speedup of ILDJIT in the 2 PUs hardware
configuration is due to the compilation phase overlapping done by the VM

implementations. ILDJIT results are provided for both a single
PU and two PUs machine – the other VMs do not get any
advantage by running on a two PUs machine.

Since ILDJIT uses the same code generation and core
libraries as Portable.NET, it can be seen that the overhead
of its multi-threaded architecture is limited, as ILDJIT always
outperforms Portable.NET. On the other hand, Mono is faster
due to the limitations of the code generator – the native
code produced by ILDJIT is very similar to that produced
by Portable.NET (though slightly smaller due to high-level
optimization), and both only produce a simple code not tuned
to the specific Intel instruction set, while Mono can rely on
a much more advanced code generator. However, overlapping
computation and compilation in the two PUs setting allows
ILDJIT to achieve an average speedup of 1.183, which brings
it performance on par with those of Mono.

Here we present a breakdown of the execution time of the
Java Grande benchmarks among the various phases of the
compilation and execution. As Figure 5 shows, on a single
processor machine ILDJIT already spends most of the time
executing target machine code, but a significant part of the
time is spent optimising the IR methods. It is notable that
the translation between IR and machine code is extremely
fast (less than 0.1% of the execution time) – thus, we can
say that the intermediate representation does a good job in
allowing most of the translation to be performed at a machine
independent level. On the other hand, Figure 6 shows that two
PUs are sufficient to overlap the translation time for the Java
Grande benchmark suite. Basically, the user does not perceive
any compilation overhead.

IV. RELATED WORK

Due to the considerable impact of the Microsoft “.NET”
initiative, several projects aimed at VES implementation.

Microsoft itself released three implementations of VES: the
.NET framework (for desktop environments), the Compact



Fig. 5. Time spent by ILDJIT over the compilation, optimizationand
execution phases using a single PU; the translation from IR to machine code
is less than 0.1%

Fig. 6. Time spent by ILDJIT over the compilation, optimizationand
execution phases using two PUs; the translation phases are less than 0.4%

Framework (for embedded devices) and Rotor, a “shared-
source” implementation. Mono is an open-source project led
by Novell (formerly by Ximian) [5] to create an ECMA
standard compliant .NET compatible set of tools, includinga
C# compiler and a Common Language Runtime. Portable.NET
is an free software implementation of CLI by Southern
Storm [12]. Its primary design goal is portability to as many
platforms as possible; such goal is achieved through use of
interpretation rather than Just-In-Time compilation as default
execution method.

In BEA’s JRockit [1] virtual machine, methods are compiled
without performing code optimizations for their first execution;
the compilation is performed by the same thread used to exe-
cute the application code, but there is a parallel thread which
has the task of sampling the execution, in order to trigger
method recompilation, increasing the optimization level.In

IBM’s J9 [13] as well as in Intel’s ORP [3] virtual machines
there are parallel threads to perform code compilation and
execution tasks.

We believe the structure ILDJIT to be rather distinct from
such projects, and its use of parallelism and continuous
optimization to be more aggressive.

V. CONCLUSIONS AND FUTURE WORK

The work described is an important step towards exploita-
tion of parallel dynamic compilation for parallel architectures
such as the multi-core processors. The experiments reported,
albeit initial, give evidence of the advantages in terms of
reduction of initial delay and execution speed. Moreover
since ILDJIT is a young system, we expect forthcoming
releases will perform significantly better. ILDJIT is designed
on a pipeline model for the translation and execution of CIL
programs, where each stage (CIL/IR translation, optimization,
IR/native translation, and execution) can be performed on a
different processor. This choice brings a great potential for
continuous and phase-aware optimization in the domain of
server applications, as well as fast reaction times and effective
compilation on embedded multiprocessor systems.

Several interesting directions are open for future research.
An important future direction for research is the study of
scheduling policies for method optimization and the study
of different threads schedule policies. Another objectiveis to
apply ILDJIT to multimedia application on embedded systems,
including performance scaling and resource management.

REFERENCES

[1] Bea jrockit: Java for the enterprise technical white paper, 2006.
[2] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler

transformations for high-performance computing.ACM Comput. Surv.,
26(4):345–420, 1994.

[3] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, andJames
Stichnoth. The open runtime platform: a flexible high-performance
managed runtime environment: Research articles.Concurr. Comput. :
Pract. Exper., 17(5-6):617–637, 2005.

[4] Marco Cornero, Roberto Costa, Ricardo Fernández Pascual, Andrea C.
Ornstein, and Erven Rohou. An experimental environment validating
the suitability of cli as an effective deployment format for embedded
systems. In Per Stenström, Michel Dubois, Manolis Katevenis, Rajiv
Gupta, and Theo Ungerer, editors,HiPEAC, volume 4917 ofLecture
Notes in Computer Science, pages 130–144. Springer, 2008.

[5] Miguel de Icaza, Paolo Molaro, and Dietmar Maurer. http://www.go-
mono.com/docs. Mono documentation.

[6] Evelyn Duesterwald. Dynamic compilation. In Y.N. Srikantand Priti
Shankar, editors,The Compiler Design Handbook — Optimizations and
Machine Code Generation, pages 739–761. CRC Press, 2003.

[7] ECMA, Rue du Rhone 114 CH-1204 Geneva.Standard ECMA-335
Common Language Infrastructure (CLI), 3rd edition, June 2005.

[8] Chandra Krintz, David Grove, Vivek Sarkar, and Brad Calder. Reducing
the overhead of dynamic compilation.Softw., Pract. Exper., 31(8):717–
738, 2001.

[9] Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynamic compi-
lation: the benefits of early investing. InVEE ’07: Proceedings of the
3rd international conference on Virtual execution environments, pages
94–104, New York, NY, USA, 2007. ACM.

[10] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and
development of java grande benchmarks. InJAVA ’99: Proceedings of
the ACM 1999 conference on Java Grande, pages 72–80, New York,
NY, USA, 1999. ACM.

[11] B. Ramakrishna Rau. Levels of representation of programsand the
architecture of universal host machines. InMICRO 11: Proceedings
of the 11th annual workshop on Microprogramming, pages 67–79,
Piscataway, NJ, USA, 1978. IEEE Press.

[12] Southern Storm Software. http://www.southern-storm.com.au. DotGNU
Portable .NET project.

[13] Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley.
Experiences with multi-threading and dynamic class loading in a java
just-in-time compiler. InCGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization, pages 87–97, Wash-
ington, DC, USA, 2006. IEEE Computer Society.


