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Compilers and compilers

Approaching to compilers, we need to understand the difference
between a toy-compiler and production-quality compiler.

Toy Compiler

small code-base

easy doing tiny edits

impossible doing
normal/big edits

Production-Quality Compiler

huge code-base

difficult performing any kind of
edits

compiler-code extremely
optimized

Key concepts:

working with a production-quality compiler is initially hard, but . . .

. . . an huge set of tools for analyzing/transforming/testing code is
provided – toy compilers miss these things!
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LLVM: Low Level Virtual Machine

Initially started as a research project at Urbana-Champaign:

now intensively used for researches involving compilers

key technology for leading industries – AMD, Apple, Intel, NVIDIA

If you are there, then it is your key-technology:

open-source compilers: Open64 [10], GCC [9], LLVM [14]

LLVM is relatively young – GCC performances are better – but . . .

. . . it is highly modular, well written, kept clean by developers.
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Compiler pipeline

Tipically a compiler is a pipeline:

C C front-end x86 back-end

middle-end

Fortran Fortran front-end ARM back-end

There are three main components:

Front-end translate a source file in the intermediate representation

Middle-end analyze intermediate representation, optimize it

Back-end generate target machine assembly from the interemediate
representation
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Compiler pipeline
Internal pipelines

Each component is composed internally by pipelines:

simple model of computations – read something, produce
something

only needed to specify how to transform input data into output
data

Complexity lies on chaining together stages.
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Compiler pipeline

We will consider only the middle-end: same concepts are valid also for
{front,back}-end.

Technical terms:

Pass a pipeline stage

IR (a.k.a. Intermediate Representation) is the language used
in the middle-end.

The pass manager manages a set of passes:

build the compilation pipeline: schedule passes together according
to dependencies.

Dependencies are hints used by the pass manager in order to schedule
passes.
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First insights

A compiler is complex:

passes are the elementary unit of work

pass manager must be advisee about pass chaining

pipeline structures are not fixed – it can change from one compiler
execution to another 1

Moreover, compilers must be conservative:

apply a transformation only if program semantic is preserved

Compiler algorithms are designed differently!

1e.g. different optimization levels
Michele Scandale <scandale@elet.polimi.it> 9



Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 10



Introduction to LLVM compiler framework

Classical Algorithm Design

Dealing with algorithm design, a good approach is the following:
1 study the problem
2 make some example
3 identify the common case
4 derive the algorithm for the common case
5 add handling for corner cases
6 improve performancing optimizing the common case

Weakness of the approach:

corner cases – a correct algorithm must consider all the corner
cases!
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Compiler Algorithm Design
Be Conservative

Corner cases are difficult to handle:

compiler algorithms must be proved to preserve program semantic

having a common methodology helps on that

Compiler algorithms are built combining three kind of passes:

analysis

optimization

normalization

We now consider a simple example: loop hoisting.
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Loop Hoisting

It is a transformation that:

looks for statements (inside the loop) not depending on the loop
state

move them outside the loop body

Loop Hoisting – Before

do {
a += i;
b = c;
i++;

} while (i < k);

Loop Hoisting – After

b = c;
do {
a += i;
i++;

} while (i < k);
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Loop Hoisting
Focus on the Transformation

The transformation is trivial:

move “good” statement outside of the loop

This is the optimization pass. It needs to known:

loops

“good” statements

They are analysis passes:

detecting loops in the program

detecting loop-independent statements

When registering loop hoisting, also the required analyses must be
declared:

pipeline automatically built – analyses → optimization
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Loop Hoisting
Proving Program Semantic Preservation

The proof is trivial:

transformation is correct if analysis are correct, but . . .

. . . usually analyses are built starting from other analyses already
implemented inside the compiler

You have to prove that combining all analyses information gives you a
correct view of the code:

analyses information cannot induce optimization passes that apply
transformations not preserving the program semantic
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Loop Hoisting
More Loops

We have spoken about loops, but which kind of loop?

do-while loops?

while loop?

for loops?

We have seen loop hoisting on:

do-while loops

What about other kinds of loops?

they must be normalized – i.e. transformed to do-while loops

Normalization passes do that:

before running loop hoisting, you must tell to the pass manager
that loop normalization must be run before

This allows to recognize more loops, thus potentially improving
optimization impact!
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Compiler Algorithm Design
A methodology

You have to:

1 analyze the problem
2 make some examples
3 detect the common case
4 declare the input format
5 declare the analyses you need
6 design an optimization pass
7 proof its correctness
8 improve algorithm perfomance by acting on common case – the

only considered up to now. Please notice that corner cases are
generally not considered – just do not optimize

9 improve the effectiveness of the algorithm by adding normalization
passes
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LLVM IR

LLVM IR [11] language is RISC-based:

instructions operates on variables 2

only load and store access memory

alloca used to reserve memory on function stacks

There are also few high level instructions:

function call – call

pointer arithmetics – getelementptr

. . .

2Virtual registers
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LLVM IR
Types & Variables

LLVM IR is strongly typed:

e.g. you cannot assign a floating point value to an integer variable
without an explicit cast

Almost everything is typed – e.g.:

functions @fact – i32 (i32)

statements %3 = icmp eq i32 %2, 0 – i1

A variable can be:

global @var = common global i32 0, align 4

function parameter define i32 @fact(i32 %n)

local %2 = load i32* %1, align 4

Local variables are defined by statements
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LLVM IR
Example: factorial

define i32 @fact(i32 %n) {
entry:
%retval = alloca i32, align 4
%n.addr = alloca i32, align 4
store i32 %n, i32* %n.addr, align 4
%0 = load i32* %n.addr, align 4
%cmp = icmp eq i32 %0, 0
br i1 %cmp, label %if.then, label %if.end

if.then:
store i32 1, i32* %retval
br label %return

if.end:
%1 = load i32* %n.addr, align 4
%2 = load i32* %n.addr, align 4
%sub = sub nsw i32 %2, 1
%call = call i32 @fact(i32 %sub)
%mul = mul nsw i32 %1, %call
store i32 %mul, i32* %retval
br label %return

return:
%3 = load i32* %retval
ret i32 %3

}
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Terminology
Speaking About LLVM IR

LLVM IR comes with 3 different flavours:

assembly human-readable format

bitcode binary on-disk machine-oriented format

in-memory binary in-memory format, used during compilation process

All formats have the same expressiveness!

File extensions:

.ll for assembly files

.bc for bitcode files
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Tools
C Language Family Front-end

Writing LLVM assembly by hand is unfeasible:

different front-ends available for LLVM

use Clang [13] for the C family

The clang driver is compatible with GCC:

≈ same command line options

To generate LLVM IR:

assembly clang -emit-llvm -S -o out.ll in.c

bitcode clang -emit-llvm -o out.bc in.c

It can also generate native code starting from LLVM assembly or LLVM
bitcode – like compiling an assembly file with GCC
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Tools
Playing with LLVM Passes

LLVM IR can be manipulated using opt:

read an input file

run specified LLVM passes on it

respecting user-provided order

Useful passes:

print CFG with opt -view-cfg input.ll

print dominator tree with opt -view-dom input.ll

. . .

Pass chaining:

run mem2reg 3, then view the CFG with opt -mem2reg -view-cfg
input.ll

3More on this later
Michele Scandale <scandale@elet.polimi.it> 24



Introduction to LLVM compiler framework

Pass Hierarchy

LLVM provides a lot of passes:

try opt -help

For performance reasons there are different kind of passes:

LLVM Passes

Pass

CallGraphSCCPass ModulePass

ImmutablePass

FunctionPass LoopPass BasicBlockPass
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LLVM Passes

Each pass kind visits particular elements of a module:

ImmutablePass compiler configuration – never run

CallGraphSCCPass post-order visit of CallGraph SCCs

ModulePass visit the whole module

FunctionPass visit functions

LoopPass post-order visit of loop nests

BasicBlockPass visit basic blocks

Specializations comes with restrictions:

e.g. a FunctionPass cannot add or delete functions

refer to [12] for accurate description of features and limitations of
each kind of pass
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Examples

Now we will see very simple passes:

some of them are meaningless

goal is to show you the LLVM API

The passes are:

instruction-count simple instruction counting analysis

hello-llvm optimization pass building an hello-world program

function-eraser optimization pass removing “small” functions

Hint: take the LLVM pass writing tutorial [12]
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What is Available Inside LLVM?

LLVM provides passes performing basic transformations:

variables promotion

loops canonicalization

. . .

They can be used to normalize/canonicalize the input:

transform into a form analyzable for further passes

Input normalization is essential:

keep passes implementation manageable
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LLVM IR Language
Static Single Assignment

LLVM IR is SSA-based:

every variable is statically assigned exactly once

Statically means that:

inside each function

for each variable %foo

there is only one statement in the form %foo = ...

Static is different from dynamic:

a static assignment can be executed more than once
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Static Single Assignment
Examples

Scalar SAXPY

float saxpy(float a, float x, float y) {
return a * x + y;

}

Scalar LLVM SAXPY

define float @saxpy(float %a, float %x, float %y) {
%1 = fmul float %a, %x
%2 = fadd float %1, %y
ret float %2

}

Temporary %1 not reused! %2 is used for the second assignment!
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Static Single Assignment
Examples

Array SAXPY

void saxpy(float a, float x[4], float y[4], float z[4]) {
for(unsigned i = 0; i < 4; ++i)
z[i] = a * x[i] + y[i];

}

Array LLVM SAXPY

for.cond:
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp ult i32 %i.0, 4
br i1 %cmp, label %for.body, label %for.end

...

for.inc:
%inc = add i32 %i.0, 1
br label %for.cond

One assignment for loop counter %i.0
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Static Single Assignment
Handling Multiple Assignments

Max

float max(float a, float b) {
return a > b ? a : b;

}

LLVM Max – Bad

%1 = fcmp ogt float %a, %b
br i1 %1, label %if.then, label %if.else

if.then:
%2 = %a
br label %if.end

if.else:
%2 = %b
br label %if.end

if.end:
ret float %2

Why is it bad?
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Static Single Assignment
Use phi to Avoid Troubles

The %5 variable must be statically set once

LLVM Max

%1 = fcmp ogt float %a, %b
br i1 %1, label %if.then, label %if.end

if.then:
br label %if.end

if.else:
br label %if.end

if.end:
%2 = phi float [ %a, %if.then ], [ %b, %if.else ]
ret float %2

The phi instruction is a conditional move:

it takes (var iablei , labeli) pairs

if coming from predecessor identified by labeli , its value is var iablei

Michele Scandale <scandale@elet.polimi.it> 33



Introduction to LLVM compiler framework

Static Single Assignment
Definition and Uses

Each SSA variable is set only once:

variable definition

Each SSA variable can be used by multiple instructions:

variable uses

Algorithms and technical language abuse of these terms:

Let %foo be a variable. If %foo definition has not side-effects, and no uses,
dead-code elimination can be efficiently performed by erasing %foo
definition from the CFG.
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Static Single Assignment
Rationale

Old compilers are not SSA-based:

putting input into SSA-form is expensive

cost must be amortized

New compilers are SSA-based:

SSA easier to work with

SSA-based analysis/optimizations faster

All modern compilers are SSA-based:

exception are old version of the HotSpot Client compiler
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Conclusions

LLVM is a production-quality compiler:

⇒ impossible knowing all details

But:

is well organized

if you known compilers theory is “easy” finding what you need inside
sources

Please take into account C++:

basic skills required
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Conclusions

Inside LLVM there a lot of passes:

normalization put program into a canonical form (next lecture)

analysis get info about program (next lecture)

transformation generally code optimization

Please remember that

a good compiler writer re-uses code

check LLVM sources before re-implementing a pass
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