
Introduction to LLVM compiler framework

Introduction to LLVM compiler framework

Michele Scandale

Politecnico di Milano

April 8, 2015

This material is strongly based on Ettore Speziale’s material for the previous year course.

Michele Scandale <scandale@elet.polimi.it> 1

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 2

Introduction to LLVM compiler framework

Compilers and compilers

Approaching to compilers, we need to understand the difference
between a toy-compiler and production-quality compiler.

Toy Compiler

small code-base

easy doing tiny edits

impossible doing
normal/big edits

Production-Quality Compiler

huge code-base

difficult performing any kind of
edits

compiler-code extremely
optimized

Key concepts:

working with a production-quality compiler is initially hard, but . . .

. . . an huge set of tools for analyzing/transforming/testing code is
provided – toy compilers miss these things!

Michele Scandale <scandale@elet.polimi.it> 3

Introduction to LLVM compiler framework

LLVM: Low Level Virtual Machine

Initially started as a research project at Urbana-Champaign:

now intensively used for researches involving compilers

key technology for leading industries – AMD, Apple, Intel, NVIDIA

If you are there, then it is your key-technology:

open-source compilers: Open64 [10], GCC [9], LLVM [14]

LLVM is relatively young – GCC performances are better – but . . .

. . . it is highly modular, well written, kept clean by developers.

Michele Scandale <scandale@elet.polimi.it> 4

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 5

Introduction to LLVM compiler framework

Compiler pipeline

Tipically a compiler is a pipeline:

C C front-end x86 back-end

middle-end

Fortran Fortran front-end ARM back-end

There are three main components:

Front-end translate a source file in the intermediate representation

Middle-end analyze intermediate representation, optimize it

Back-end generate target machine assembly from the interemediate
representation

Michele Scandale <scandale@elet.polimi.it> 6

Introduction to LLVM compiler framework

Compiler pipeline
Internal pipelines

Each component is composed internally by pipelines:

simple model of computations – read something, produce
something

only needed to specify how to transform input data into output
data

Complexity lies on chaining together stages.

Michele Scandale <scandale@elet.polimi.it> 7

Introduction to LLVM compiler framework

Compiler pipeline

We will consider only the middle-end: same concepts are valid also for
{front,back}-end.

Technical terms:

Pass a pipeline stage

IR (a.k.a. Intermediate Representation) is the language used
in the middle-end.

The pass manager manages a set of passes:

build the compilation pipeline: schedule passes together according
to dependencies.

Dependencies are hints used by the pass manager in order to schedule
passes.

Michele Scandale <scandale@elet.polimi.it> 8

Introduction to LLVM compiler framework

First insights

A compiler is complex:

passes are the elementary unit of work

pass manager must be advisee about pass chaining

pipeline structures are not fixed – it can change from one compiler
execution to another 1

Moreover, compilers must be conservative:

apply a transformation only if program semantic is preserved

Compiler algorithms are designed differently!

1e.g. different optimization levels
Michele Scandale <scandale@elet.polimi.it> 9

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 10

Introduction to LLVM compiler framework

Classical Algorithm Design

Dealing with algorithm design, a good approach is the following:
1 study the problem
2 make some example
3 identify the common case
4 derive the algorithm for the common case
5 add handling for corner cases
6 improve performancing optimizing the common case

Weakness of the approach:

corner cases – a correct algorithm must consider all the corner
cases!

Michele Scandale <scandale@elet.polimi.it> 11

Introduction to LLVM compiler framework

Compiler Algorithm Design
Be Conservative

Corner cases are difficult to handle:

compiler algorithms must be proved to preserve program semantic

having a common methodology helps on that

Compiler algorithms are built combining three kind of passes:

analysis

optimization

normalization

We now consider a simple example: loop hoisting.

Michele Scandale <scandale@elet.polimi.it> 12

Introduction to LLVM compiler framework

Loop Hoisting

It is a transformation that:

looks for statements (inside the loop) not depending on the loop
state

move them outside the loop body

Loop Hoisting – Before

do {
a += i;
b = c;
i++;

} while (i < k);

Loop Hoisting – After

b = c;
do {
a += i;
i++;

} while (i < k);

Michele Scandale <scandale@elet.polimi.it> 13

Introduction to LLVM compiler framework

Loop Hoisting
Focus on the Transformation

The transformation is trivial:

move “good” statement outside of the loop

This is the optimization pass. It needs to known:

loops

“good” statements

They are analysis passes:

detecting loops in the program

detecting loop-independent statements

When registering loop hoisting, also the required analyses must be
declared:

pipeline automatically built – analyses → optimization

Michele Scandale <scandale@elet.polimi.it> 14

Introduction to LLVM compiler framework

Loop Hoisting
Proving Program Semantic Preservation

The proof is trivial:

transformation is correct if analysis are correct, but . . .

. . . usually analyses are built starting from other analyses already
implemented inside the compiler

You have to prove that combining all analyses information gives you a
correct view of the code:

analyses information cannot induce optimization passes that apply
transformations not preserving the program semantic

Michele Scandale <scandale@elet.polimi.it> 15

Introduction to LLVM compiler framework

Loop Hoisting
More Loops

We have spoken about loops, but which kind of loop?

do-while loops?

while loop?

for loops?

We have seen loop hoisting on:

do-while loops

What about other kinds of loops?

they must be normalized – i.e. transformed to do-while loops

Normalization passes do that:

before running loop hoisting, you must tell to the pass manager
that loop normalization must be run before

This allows to recognize more loops, thus potentially improving
optimization impact!

Michele Scandale <scandale@elet.polimi.it> 16

Introduction to LLVM compiler framework

Compiler Algorithm Design
A methodology

You have to:

1 analyze the problem
2 make some examples
3 detect the common case
4 declare the input format
5 declare the analyses you need
6 design an optimization pass
7 proof its correctness
8 improve algorithm perfomance by acting on common case – the

only considered up to now. Please notice that corner cases are
generally not considered – just do not optimize

9 improve the effectiveness of the algorithm by adding normalization
passes

Michele Scandale <scandale@elet.polimi.it> 17

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 18

Introduction to LLVM compiler framework

LLVM IR

LLVM IR [11] language is RISC-based:

instructions operates on variables 2

only load and store access memory

alloca used to reserve memory on function stacks

There are also few high level instructions:

function call – call

pointer arithmetics – getelementptr

. . .

2Virtual registers
Michele Scandale <scandale@elet.polimi.it> 19

Introduction to LLVM compiler framework

LLVM IR
Types & Variables

LLVM IR is strongly typed:

e.g. you cannot assign a floating point value to an integer variable
without an explicit cast

Almost everything is typed – e.g.:

functions @fact – i32 (i32)

statements %3 = icmp eq i32 %2, 0 – i1

A variable can be:

global @var = common global i32 0, align 4

function parameter define i32 @fact(i32 %n)

local %2 = load i32* %1, align 4

Local variables are defined by statements

Michele Scandale <scandale@elet.polimi.it> 20

Introduction to LLVM compiler framework

LLVM IR
Example: factorial

define i32 @fact(i32 %n) {
entry:
%retval = alloca i32, align 4
%n.addr = alloca i32, align 4
store i32 %n, i32* %n.addr, align 4
%0 = load i32* %n.addr, align 4
%cmp = icmp eq i32 %0, 0
br i1 %cmp, label %if.then, label %if.end

if.then:
store i32 1, i32* %retval
br label %return

if.end:
%1 = load i32* %n.addr, align 4
%2 = load i32* %n.addr, align 4
%sub = sub nsw i32 %2, 1
%call = call i32 @fact(i32 %sub)
%mul = mul nsw i32 %1, %call
store i32 %mul, i32* %retval
br label %return

return:
%3 = load i32* %retval
ret i32 %3

}

Michele Scandale <scandale@elet.polimi.it> 21

Introduction to LLVM compiler framework

Terminology
Speaking About LLVM IR

LLVM IR comes with 3 different flavours:

assembly human-readable format

bitcode binary on-disk machine-oriented format

in-memory binary in-memory format, used during compilation process

All formats have the same expressiveness!

File extensions:

.ll for assembly files

.bc for bitcode files

Michele Scandale <scandale@elet.polimi.it> 22

Introduction to LLVM compiler framework

Tools
C Language Family Front-end

Writing LLVM assembly by hand is unfeasible:

different front-ends available for LLVM

use Clang [13] for the C family

The clang driver is compatible with GCC:

≈ same command line options

To generate LLVM IR:

assembly clang -emit-llvm -S -o out.ll in.c

bitcode clang -emit-llvm -o out.bc in.c

It can also generate native code starting from LLVM assembly or LLVM
bitcode – like compiling an assembly file with GCC

Michele Scandale <scandale@elet.polimi.it> 23

Introduction to LLVM compiler framework

Tools
Playing with LLVM Passes

LLVM IR can be manipulated using opt:

read an input file

run specified LLVM passes on it

respecting user-provided order

Useful passes:

print CFG with opt -view-cfg input.ll

print dominator tree with opt -view-dom input.ll

. . .

Pass chaining:

run mem2reg 3, then view the CFG with opt -mem2reg -view-cfg
input.ll

3More on this later
Michele Scandale <scandale@elet.polimi.it> 24

Introduction to LLVM compiler framework

Pass Hierarchy

LLVM provides a lot of passes:

try opt -help

For performance reasons there are different kind of passes:

LLVM Passes

Pass

CallGraphSCCPass ModulePass

ImmutablePass

FunctionPass LoopPass BasicBlockPass

Michele Scandale <scandale@elet.polimi.it> 25

Introduction to LLVM compiler framework

LLVM Passes

Each pass kind visits particular elements of a module:

ImmutablePass compiler configuration – never run

CallGraphSCCPass post-order visit of CallGraph SCCs

ModulePass visit the whole module

FunctionPass visit functions

LoopPass post-order visit of loop nests

BasicBlockPass visit basic blocks

Specializations comes with restrictions:

e.g. a FunctionPass cannot add or delete functions

refer to [12] for accurate description of features and limitations of
each kind of pass

Michele Scandale <scandale@elet.polimi.it> 26

Introduction to LLVM compiler framework

Examples

Now we will see very simple passes:

some of them are meaningless

goal is to show you the LLVM API

The passes are:

instruction-count simple instruction counting analysis

hello-llvm optimization pass building an hello-world program

function-eraser optimization pass removing “small” functions

Hint: take the LLVM pass writing tutorial [12]

Michele Scandale <scandale@elet.polimi.it> 27

Introduction to LLVM compiler framework

What is Available Inside LLVM?

LLVM provides passes performing basic transformations:

variables promotion

loops canonicalization

. . .

They can be used to normalize/canonicalize the input:

transform into a form analyzable for further passes

Input normalization is essential:

keep passes implementation manageable

Michele Scandale <scandale@elet.polimi.it> 28

Introduction to LLVM compiler framework

LLVM IR Language
Static Single Assignment

LLVM IR is SSA-based:

every variable is statically assigned exactly once

Statically means that:

inside each function

for each variable %foo

there is only one statement in the form %foo = ...

Static is different from dynamic:

a static assignment can be executed more than once

Michele Scandale <scandale@elet.polimi.it> 29

Introduction to LLVM compiler framework

Static Single Assignment
Examples

Scalar SAXPY

float saxpy(float a, float x, float y) {
return a * x + y;

}

Scalar LLVM SAXPY

define float @saxpy(float %a, float %x, float %y) {
%1 = fmul float %a, %x
%2 = fadd float %1, %y
ret float %2

}

Temporary %1 not reused! %2 is used for the second assignment!

Michele Scandale <scandale@elet.polimi.it> 30

Introduction to LLVM compiler framework

Static Single Assignment
Examples

Array SAXPY

void saxpy(float a, float x[4], float y[4], float z[4]) {
for(unsigned i = 0; i < 4; ++i)
z[i] = a * x[i] + y[i];

}

Array LLVM SAXPY

for.cond:
%i.0 = phi i32 [0, %entry], [%inc, %for.inc]
%cmp = icmp ult i32 %i.0, 4
br i1 %cmp, label %for.body, label %for.end

...

for.inc:
%inc = add i32 %i.0, 1
br label %for.cond

One assignment for loop counter %i.0
Michele Scandale <scandale@elet.polimi.it> 31

Introduction to LLVM compiler framework

Static Single Assignment
Handling Multiple Assignments

Max

float max(float a, float b) {
return a > b ? a : b;

}

LLVM Max – Bad

%1 = fcmp ogt float %a, %b
br i1 %1, label %if.then, label %if.else

if.then:
%2 = %a
br label %if.end

if.else:
%2 = %b
br label %if.end

if.end:
ret float %2

Why is it bad?

Michele Scandale <scandale@elet.polimi.it> 32

Introduction to LLVM compiler framework

Static Single Assignment
Use phi to Avoid Troubles

The %5 variable must be statically set once

LLVM Max

%1 = fcmp ogt float %a, %b
br i1 %1, label %if.then, label %if.end

if.then:
br label %if.end

if.else:
br label %if.end

if.end:
%2 = phi float [%a, %if.then], [%b, %if.else]
ret float %2

The phi instruction is a conditional move:

it takes (var iablei , labeli) pairs

if coming from predecessor identified by labeli , its value is var iablei

Michele Scandale <scandale@elet.polimi.it> 33

Introduction to LLVM compiler framework

Static Single Assignment
Definition and Uses

Each SSA variable is set only once:

variable definition

Each SSA variable can be used by multiple instructions:

variable uses

Algorithms and technical language abuse of these terms:

Let %foo be a variable. If %foo definition has not side-effects, and no uses,
dead-code elimination can be efficiently performed by erasing %foo
definition from the CFG.

Michele Scandale <scandale@elet.polimi.it> 34

Introduction to LLVM compiler framework

Static Single Assignment
Rationale

Old compilers are not SSA-based:

putting input into SSA-form is expensive

cost must be amortized

New compilers are SSA-based:

SSA easier to work with

SSA-based analysis/optimizations faster

All modern compilers are SSA-based:

exception are old version of the HotSpot Client compiler

Michele Scandale <scandale@elet.polimi.it> 35

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 36

Introduction to LLVM compiler framework

Conclusions

LLVM is a production-quality compiler:

⇒ impossible knowing all details

But:

is well organized

if you known compilers theory is “easy” finding what you need inside
sources

Please take into account C++:

basic skills required

Michele Scandale <scandale@elet.polimi.it> 37

Introduction to LLVM compiler framework

Conclusions

Inside LLVM there a lot of passes:

normalization put program into a canonical form (next lecture)

analysis get info about program (next lecture)

transformation generally code optimization

Please remember that

a good compiler writer re-uses code

check LLVM sources before re-implementing a pass

Michele Scandale <scandale@elet.polimi.it> 38

Introduction to LLVM compiler framework

Contents

1 Introduction

2 Compiler organization

3 Algorithm design

4 Inside LLVM

5 Conclusions

6 Bibliography

Michele Scandale <scandale@elet.polimi.it> 39

Introduction to LLVM compiler framework

Bibliography I

Scott Chacon.
Pro Git.
http://git-scm.com/book.

LLVM Community.
Autovectorization in LLVM.
http://llvm.org/docs/Vectorizers.html.

LLVM Community.
LLVM Coding Standards.
http://llvm.org/docs/CodingStandards.html.

LLVM Community.
LLVM Passes.
http://llvm.org/docs/Passes.html.

Michele Scandale <scandale@elet.polimi.it> 40

Introduction to LLVM compiler framework

Bibliography II

LLVM Community.
LLVM Programmer’s Manual.
http://llvm.org/docs/ProgrammersManual.html.

John T. Criswell, Daniel Dunbar, Reid Spencer, and Tanya Lattner.
LLVM Testing Infrastructure Guide.
http://llvm.org/docs/TestingGuide.html.

Bruce Eckel.
Thinking in C++ – Volume One: Introduction to Standard C++.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Bruce Eckel and Chuck Allison.
Thinking in C++ – Volume Two: Practical Programming.
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html.

Michele Scandale <scandale@elet.polimi.it> 41

Introduction to LLVM compiler framework

Bibliography III

GNU.
GNU Compiler Collection.
http://gcc.gnu.org.

Open64 Steering Group.
Open64.
http://www.open64.net.

Chris Lattner and Vikram Adve.
LLVM Language Reference Manual.
http://llvm.org/docs/LangRef.html.

Chris Lattner and Jim Laskey.
Writing an LLVM Pass.
http://llvm.org/docs/WritingAnLLVMPass.html.

Michele Scandale <scandale@elet.polimi.it> 42

Introduction to LLVM compiler framework

Bibliography IV

University of Illinois at Urbana-Champaign.
Clang: a C language family frontend for LLVM.
http://clang.llvm.org.

University of Illinois at Urbana-Champaign.
Low Level Virtual Machine.
http://www.llvm.org.

Ettore Speziale.
Compiler Optimization and Transformation Passes.
https://github.com/speziale-ettore/COTPasses.

Linus Torvalds.
Re: SCO: "thread creation is about a thousand times faster than
onnative.
https://lkml.org/lkml/2000/8/25/132.

Michele Scandale <scandale@elet.polimi.it> 43

	Introduction
	Compiler organization
	Algorithm design
	Inside LLVM
	Conclusions
	Bibliography

