
LLVM Passes

LLVM Passes

Michele Scandale

Politecnico di Milano

April 10, 2015

This material is strongly based on Ettore Speziale’s material for the previous year course.

Michele Scandale <scandale@elet.polimi.it> 1

LLVM Passes

Contents

1 Normalization Passes

2 Analysis Passes

3 Conclusions

4 Bibliography

Michele Scandale <scandale@elet.polimi.it> 2

LLVM Passes

Canonicalize Pass Input

We will see the following passes:

Pass Switch

Variable promotion mem2reg
Loop simplify loop-simplify

Loop-closed SSA lcssa
Induction variable simplification indvars

They are normalization passes:

put data into a canonical form

Michele Scandale <scandale@elet.polimi.it> 3

LLVM Passes

Variable Promotion

One of the most difficult things in compiler is:

considering memory accesses

Plain SAXPY

define float @saxpy(float %a, float %x, float %y) {
entry:
%a.addr = alloca float, align 4
%x.addr = alloca float, align 4
%y.addr = alloca float, align 4
store float %a, float* %a.addr, align 4
store float %x, float* %x.addr, align 4
store float %y, float* %y.addr, align 4
%0 = load float* %a.addr, align 4
%1 = load float* %x.addr, align 4
%mul = fmul float %0, %1
%2 = load float* %y.addr, align 4
%add = fadd float %mul, %2
ret float %add

}

Michele Scandale <scandale@elet.polimi.it> 4

LLVM Passes

Variable Promotion
Simplifying Representation

In the SAXPY kernel some alloca are generated:

represent local variables 1

They are generated due to compiler conservative approach:

maybe some instruction can take the addresses of such variables,
hence a memory location is needed

Complex representations makes hard performing further actions:

suppose you want to compute a * x + y using only one instruction 2

hard to detect due to load and store

1Arguments are local variables
2e.g. FMA4

Michele Scandale <scandale@elet.polimi.it> 5

LLVM Passes

Variable Promotion
Using Memory Only When Necessary

To limit the number of instruction accessing memory:

we need to eliminate load and store

achieved by promoting variables from memory to registers

Inside LLVM SSA-based representation:

memory Stack allocations – e.g %1 = alloca float, align 4

register SSA variables – e.g. %a

The mem2reg pass focus on:

eliminating alloca with only load and store uses

Also available as utility:

llvm::PromoteMemToReg
3

3see Transforms/Utils/PromoteMemoryToRegister.cpp
Michele Scandale <scandale@elet.polimi.it> 6

LLVM Passes

Variable Promotion
Example

Starting Point

%1 = alloca float
%2 = alloca float
%3 = alloca float
store %a, %1
store %x, %2
store %y, %3
%4 = load %1
%5 = load %2
%6 = fmul %4, %5
%7 = load %3
%8 = fadd %6, %7
ret %8

Copy propagation performed
transparently by the compiler

Promoting alloca

%1 = %a
%2 = %x
%3 = %y
%4 = %1
%5 = %2
%6 = fmul %4, %5
%7 = %3
%8 = fadd %6, %7
ret %8

After Copy-propagation

%1 = fmul %a, %x
%2 = fadd %1, %y
ret %2

Michele Scandale <scandale@elet.polimi.it> 7

LLVM Passes

Loops

Different kind of loops:

do-while Loops

1

2

while Loops

1 2

Irreducible Loops

1

2 3

In LLVM the focus is on one kind of loop:

natural loops

Michele Scandale <scandale@elet.polimi.it> 8

LLVM Passes

Natural Loops

A natural loop:

has only one entry node – header

there is a back edge that enter the loop header

Under this definition:

the irreducible loop is not a natural loop

since LLVM consider only natural loops, the irreducible loop is not
recognized as a loop

Michele Scandale <scandale@elet.polimi.it> 9

LLVM Passes

Loop Terminology

Loops defined starting from back-edges:

back-edge edge entering loop header: (3, 1)

header loop entry node: 1

body nodes that can reach
back-edge source node (3)
without passing from
back-edge target node (1)
plus back-edge target node:
{1, 2, 3}

A loop

1 2 3

4 5

exiting nodes with a successor outside the loop: {1, 3}
exit nodes with a predecessor inside the loop: {4, 5}

Michele Scandale <scandale@elet.polimi.it> 10

LLVM Passes

Loop Simplify

Natural loops finding is the base pass identify loops, but:

some features are not analysis/optimization friendly

The loop-simplify pass normalize natural loops:

pre-header the only predecessor
of header node

latch the starting node of
the only back-edge

exit-block ensures exits
dominated by loop
header

Pre-header Insertion

0

1 2 3

4 5

Michele Scandale <scandale@elet.polimi.it> 11

LLVM Passes

Loop Simplify
Example

Latch Insertion

0

1 2 3

6

4 5

Exit-block Insertion

0

1 2 3

6

74 5

pre-header always executed before entering the loop

latch always executed before starting a new iteration

exit-blocks always executed after exiting the loop

Michele Scandale <scandale@elet.polimi.it> 12

LLVM Passes

Loop-closed SSA

Loop representation can be further normalized:

loop-simplify normalize the shape of the loop

nothing is said about loop definitions

Keeping SSA form is expensive with loops:

lcssa insert phi instruction at loop boundaries for variables defined
inside the loop body and used outside

this guarantee isolation between optimization performed inside and
outside the loop

faster keeping IR into SSA form – propagation of code changes
outside the loop blocked by phi instructions

Michele Scandale <scandale@elet.polimi.it> 13

LLVM Passes

Loop-closed SSA
Example

Linear Search

unsigned search(float *x, unsigned n, float y) {
unsigned i, j = 0;
for(i = 0; i != n; ++i)
if(x[i] == y)
j = i;

return j;
}

The example is trivial:

think about having large loop bodies

transformation becomes useful

Michele Scandale <scandale@elet.polimi.it> 14

LLVM Passes

Loop-closed SSA
Example

Before LCSSA

for.cond:
%i.0 = phi i32 [0, %entry], [%inc, %for.inc]
%j.0 = phi i32 [0, %entry], [%j.1, %for.inc]
%cmp = icmp ne i32 %i.0, %n
br i1 %cmp, label %for.body, label %for.end

...

if.end:
%j.1 = phi i32 [%i.0, %if.then], [%j.0, %for.body]
br label %for.inc

for.inc:
%inc = add i32 %i.0, 1
br label %for.cond

for.end:
ret i32 %j.0

Michele Scandale <scandale@elet.polimi.it> 15

LLVM Passes

Loop-closed SSA
Example

After LCSSA

for.cond:
%i.0 = phi i32 [0, %entry], [%inc, %for.inc]
%j.0 = phi i32 [0, %entry], [%j.1, %for.inc]
%cmp = icmp ne i32 %i.0, %n
br i1 %cmp, label %for.body, label %for.end

...

if.end:
%j.1 = phi i32 [%i.0, %if.then], [%j.0, %for.body]
br label %for.inc

for.inc:
%inc = add i32 %i.0, 1
br label %for.cond

for.end:
%j.0.lcssa = phi i32 [%j.0, %for.cond]
ret i32 %j.0.lcssa

Michele Scandale <scandale@elet.polimi.it> 16

LLVM Passes

Induction Variables

Some loop variables are special:

e.g. counters

Generalization lead to induction variables:

foo is a loop induction variable if its successive values form an
arithmetic progression:

foo = bar * baz + biz

where bar, biz are loop-invariant 4, and baz is an induction variable

foo is a canonical induction variable if it is always incremented by a
constant amount:

foo = foo + biz

where biz is loop-invariant

4Constants inside the loop
Michele Scandale <scandale@elet.polimi.it> 17

LLVM Passes

Induction Variable Simplification

Canonical induction variables are used to drive loop execution:

given a loop, the indvars pass tries to find its canonical induction
variable

With respect to theory, LLVM canonical induction variable is:

initialized to 0

incremented by 1 at each loop iteration

Michele Scandale <scandale@elet.polimi.it> 18

LLVM Passes

Normalization
Wrap-up

Normalization passes running order:

1 mem2reg: limit use of memory, increasing the effectiveness of
subsequent passes

2 loop-simplify: canonicalize loop shape, lower burden of writing
passes

3 lcssa: keep effects of subsequent loop optimizations local, limiting
overhead of maintaining SSA form

4 indvars: normalize induction variables, highlighting the canonical
induction variable

Other normalization passes available:

try running opt -help

Michele Scandale <scandale@elet.polimi.it> 19

LLVM Passes

Contents

1 Normalization Passes

2 Analysis Passes

3 Conclusions

4 Bibliography

Michele Scandale <scandale@elet.polimi.it> 20

LLVM Passes

Checking Input Properties

Analysis basically allows to:

derive information and properties of the input

verify properties of input

Keeping analysis information is expensive:

tuned algorithms updates analysis information when an
optimization invalidates them

incrementally updating analysis is cheaper than recomputing them

Many LLVM analysis supports incremental updates:

this is an optimization

forget this feature for the home-work

focus on information provided by analysis

Michele Scandale <scandale@elet.polimi.it> 21

LLVM Passes

Useful Analysis

We will see the following passes:

Analysis

Pass Switch Transitive

Control flow graph none No
Dominator tree domtree No

Post-dominator tree postdomtree No
Loop information loops Yes
Scalar evolution scalar-evolution Yes
Alias analysis special Yes

Memory dependence memdep Yes

Requiring analysis by transitivity:

yes llvm::AnalysisUsage::addRequiredTransitive<T>()

no llvm::AnalysisUsage::addRequired<T>()

Michele Scandale <scandale@elet.polimi.it> 22

LLVM Passes

Control Flow Graph

The Control Flow Graph is implicitly maintained by LLVM:

no specific pass to build it

Recap:

CFG for a function is a set of basic blocks

a basic block is a set of instructions

Functions and basic blocks acts like containers:

STL-like accessors: front(), back(), size(), . . .

STL-like iterators: begin(), end()

Each contained element is aware of its container:

getParent()

Michele Scandale <scandale@elet.polimi.it> 23

LLVM Passes

Control Flow Graph
Walking

Every CFG has an entry basic block:

the first executed basic block

it is the root/source of the graph

get it with llvm::Function::getEntryBlock()

More than one exit blocks can be generated:

their terminator instructions are rets

they are the leaves/sinks of the graph

use llvm::BasicBlock::getTerminator() to get the terminator . . .

. . . then check its real class

Michele Scandale <scandale@elet.polimi.it> 24

LLVM Passes

Side Note
Casting Framework

For performance reasons, a custom casting framework is used:

you cannot use static_cast and dynamic_cast with types/classes
provided by LLVM

LLVM Casting Functions

Meaning Function

Static cast of Y * to X * X * llvm::cast<X>(Y *)

Dynamic cast of Y * to X * X * llvm::dyn_cast<X>(Y *)

Is Y an X? bool llvm::isa<X>(Y *)

Example:

is BB a sink?

llvm::isa<llvm::ReturnInst>(BB.getTerminator())

Michele Scandale <scandale@elet.polimi.it> 25

LLVM Passes

Control Flow Graph
Basic Blocks

Every basic block BB has one or more:

predecessors from pred_begin(BB) to pred_end(BB)

successors from succ_begin(BB) to succ_end(BB)

Convenience accessors directly available in llvm::BasicBlock:

e.g. llvm::BasicBlock::getUniquePredecessor()

Other convenience member functions:

moving a basic block: llvm::BasicBlock::moveBefore(llvm::BasicBlock *) or
llvm::BasicBlock::moveAfter(llvm::BasicBlock *)

split a basic block:
llvm::BasicBlock::splitBasicBlock(llvm::BasicBlock::iterator)

. . .

Michele Scandale <scandale@elet.polimi.it> 26

LLVM Passes

Control Flow Graph
Instructions

The llvm::Instruction class define common operations:

e.g. getting an operand: llvm::Instruction::getOperand(unsigned)

Subclasses provide specialized accessors:

e.g the load instruction takes an operand that is a pointer:
llvm::LoadInst::getPointerOperand()

The value produced by the instruction is the instruction itself:

Example

Consider:
%6 = load i32* %1, align 4

the load is described by an instance of llvm::LoadInst. That instance also
models the %6 variable

Michele Scandale <scandale@elet.polimi.it> 27

LLVM Passes

Instructions
Creating New Instructions

Instructions built using:

constructors – e.g. llvm::LoadInst::LoadInst(...)

factory methods – e.g. llvm::GetElementPtrInst::Create(...)

Interface is not homogeneous:

some instructions support both methods

others support only one

At build-time, instructions can be:

appended to a basic block

inserted after/before a given instruction

Insertion point usually specified as builder last argument

Michele Scandale <scandale@elet.polimi.it> 28

LLVM Passes

Side Note
Definitions and Uses

LLVM class hierarchy is built around two simple concepts:

value something that can be used: llvm::Value

user something that can use: llvm::User

A value is a definition:

llvm::Value::use_begin(), llvm::Value::use_end() to visit uses

An user access definitions:

llvm::User::op_begin(), llvm::User::op_end() to visit used values

Functions:

used by call sites

uses formal parameters

Instructions:

define an SSA value

uses operands

Michele Scandale <scandale@elet.polimi.it> 29

LLVM Passes

Side Note
Value Typing

Every llvm::Value is typed:

use llvm::Value::getType() to get the type

Since every instructions is/define a value:

instructions are typed

Example

Consider:
%6 = load i32* %1, align 4

the %6 variable actually is the instruction itself. Its type is the type of
load return value, i32

Michele Scandale <scandale@elet.polimi.it> 30

LLVM Passes

Dominance Trees

Dominance trees answer to control-related queries:

is this basic block executed
before that?

llvm::DominatorTree

is this basic block executed
after that?

llvm::PostDominatorTree

The two trees interface is similar:

bool dominates(X *, X *)

bool properlyDominates(X *, X *)

Where X is an llvm::BasicBlock or an llvm::Instruction

Using opt is possible printing them:

-view-dom, -dot-dom

-view-postdom, -dot-postdom

Michele Scandale <scandale@elet.polimi.it> 31

LLVM Passes

Loop Information

Loop information are represented using two classes:

llvm::LoopInfo analysis detects natural loops

llvm::Loop represents a single loop

Using llvm::LoopInfo it is possible:

navigate through top-level loops:
llvm::LoopInfo::begin(), llvm::LoopInfo::end()

get the loop for a given basic block:
llvm::LoopInfo::operator[](llvm::BasicBlock *)

Michele Scandale <scandale@elet.polimi.it> 32

LLVM Passes

Loop Information
Nesting Tree

Loops are represented in a nesting tree:

Source

while(i < 10) {
while(j < 10)
while(k < 10)
...

while(h < 10)
...

}

Loop Nest

1

2

3

4

Nest navigation:

children loops: llvm::Loop::begin(), llvm::Loop::end()

parent loop: llvm::Loop::getParentLoop()

Michele Scandale <scandale@elet.polimi.it> 33

LLVM Passes

Loop Information
Query Loops

Accessors for relevant nodes also available:

pre-header llvm::Loop:getLoopPreheader()

header llvm::Loop::getHeader()

latch llvm::Loop::getLoopLatch()

exiting llvm::Loop::getLoopExiting(),
llvm::Loop::getExitingBlocks(...)

exit llvm::Loop::getExitBlock()
llvm::Loop::getExitBlocks(...)

Loop basic blocks accessible via:

iterators llvm::Loop::block_begin(),
llvm::Loop::block_end()

vector std::vector<llvm::BasicBlock *> &llvm::Loop::getBlocks()

Michele Scandale <scandale@elet.polimi.it> 34

LLVM Passes

Scalar Evolution

The SCalar EVolution framework:

represents scalar expressions

supports recursive updates

lower burden of explicitly handling expressions composition

is designed to support general induction variables

3

Example

for.cond:
%i.0 = phi [0, %entry], [%i.inc, %for.inc]
%cond = icmp ne %i.0, 10
br %cond, label %for.body, label %for.end

for.inc:
%i.inc = add nsw %i.0, 1
br label %for.cond

for.end:
...

SCEV for %i.0:

initial value 0

incremented

by 1 at each
iteration

final value 10

Michele Scandale <scandale@elet.polimi.it> 35

LLVM Passes

Scalar Evolution
Example

Source

void foo() {
int bar[10][20];

for(int i = 0; i < 10; ++i)
for(int j = 0; j < 20; ++j)
bar[i][j] = 0;

}

SCEV {A,B,C}<%D>:

A initial

B operator

C operand

D defining BB

Induction Variables

%i.0 = phi i32 [0, %entry], [%inc6, %for.inc5]
--> {0,+,1}<nuw><nsw><%for.cond> Exits: 10
%j.0 = phi i32 [0, %for.body], [%inc, %for.inc]
--> {0,+,1}<nuw><nsw><%for.cond1> Exits: 20

Michele Scandale <scandale@elet.polimi.it> 36

LLVM Passes

Scalar Evolution
More than Induction Variables

The scalar evolution framework manages any scalar expression:

Pointer SCEVs

rrayidx = getelementptr {...} %bar, i32 0, i32 %i.0
--> {%bar,+,80}<nsw><%for.cond> Exits: {%bar,+,80}<nsw><%for.cond>
%arrayidx4 = getelementptr {...} %arrayidx, i32 0, i32 %j.0
--> {{%bar,+,80}<nsw><%for.cond>,+,4}<nsw><%for.cond1>

Exits: {(80 + %bar),+,80}<nw><%for.cond>

SCEV is an analysis used for common optimizations:

induction variable substitution

strength reduction

vectorization

. . .

Michele Scandale <scandale@elet.polimi.it> 37

LLVM Passes

Scalar Evolution
SCEVs Design

SCEVs are modeled by the llvm::SCEV class:

a subclass for each kind of SCEV: e.g. llvm::SCEVAddExpr

instantiation disabled

A SCEV actually is a tree of SCEVs:

{(80 + %bar),+,80} = {%1,+,80}, %1 = 80 + %bar

Tree leaves:

constant llvm::SCEVConstant: e.g. 80

unknown 5
llvm::SCEVUnknown: e.g. %bar

SCEV tree explorable through the visitor pattern:

llvm::SCEVVisitor

5Not further splittable
Michele Scandale <scandale@elet.polimi.it> 38

LLVM Passes

Scalar Evolution
Analysis Interface

The llvm::ScalarEvolution class:

analyzes SCEVs for a llvm::Function

builds SCEVs for values:
llvm::ScalarEvolution::getSCEV(llvm::Value *)

creates new SCEVs:
llvm::ScalarEvolution::getConstant(llvm::ConstantInt *)

llvm::ScalarEvolution::getAddExpr(llvm::SCEV *, llvm::SCEV *)

. . .

gets important SCEVs:
llvm::ScalarEvolution::getBackedgeTakenCount(llvm::Loop *)

llvm::ScalarEvolution::getPointerBase(llvm::SCEV *)

. . .

Michele Scandale <scandale@elet.polimi.it> 39

LLVM Passes

Alias Analysis

Let X be an instruction accessing a memory location:

is there another instruction accessing the same location?

Alias analysis tries to answer the question:

application memory operation scheduling

problem often fails

Different algorithms for alias analysis:

common interface – llvm::AliasAnalysis – for all algorithms

by default, basic alias analyzer – basicaa – is used

Requiring Alias Analysis

AU.addRequiredTransitive <llvm::AliasAnalysis >();

Michele Scandale <scandale@elet.polimi.it> 40

LLVM Passes

Alias Analysis
Memory Representation

Source

%1 = load i16* %a
%2 = load i16* %b
store i16 %2, i32* %a
store i16 %1, i32* %b

Distinct Locations

%a

%b

Same Location

%a

%b

Overlapping Locations

%a

%b

Basic building block is llvm::AliasAnalysis::Location:

address: e.g. %a

size: e.g. 2 bytes

Michele Scandale <scandale@elet.polimi.it> 41

LLVM Passes

Alias Analyzer
Basic Interface

Given two locations X, Y , the alias analyzer classifies them:

llvm::AliasAnalyzer::NoAlias: X and Y are different memory locations

llvm::AliasAnalyzer::MustAlias: X and Y are equal – i.e. they points to
the same address

llvm::AliasAnalyzer::PartialAlias: X and Y partially overlap – i.e. they
points to different addresses, but the pointed memory areas
partially overlap

llvm::AliasAnalyzer::MayAlias: unable to compute aliasing information
– i.e. X and Y can be different locations, or X can be a
complete/partial alias of Y

Queries performed using:

llvm::AliasAnalyzer::alias(X, Y)

Michele Scandale <scandale@elet.polimi.it> 42

LLVM Passes

Alias Analyzer
Mid-level Interface

Basic alias analyzer interface is low-level – we would like expressing
queries about a single pointer X:

how referenced memory location is accessed?

which other instructions reference the same location?

What we need is a set, to classify memory locations:

construct a llvm::AliasSetTracker starting from a llvm::AliasAnalyer *

it builds llvm::AliasSets

For a given location X, a llvm::AliasSet:

contains all locations aliasing with X

Michele Scandale <scandale@elet.polimi.it> 43

LLVM Passes

Alias Analyzer
Alias Set Memory Accesses

Each alias set references the memory:

llvm::AliasSet::NoModRef: no memory reference – i.e. the set is empty

llvm::AliasSet::Mod: memory accessed in write-mode – e.g. a store is
inside the set

llvm::AliasSet::Ref: memory accessed in read-mode – e.g. a load is
inside the set

llvm::AliasSet::ModRef: memory accessed in read-write mode – e.g. a
load and a store inside the set

Michele Scandale <scandale@elet.polimi.it> 44

LLVM Passes

Alias Analyzer
Mid-level Interface

Entry point is llvm::AliasSetTracker::getAliasSetForPointer(...):

llvm::Value *: location address

uint64_t: location size

llvm::MDNode *: used for type-based alias analysis 6

bool *: whether a new llvm::AliasSet has been created to hold the
location – location does not alias up to now

Having the llvm::AliasSet:

STL container-like interface: size(), begin(), end(), . . .

check reference type: llvm::AliasSet::isRef(), . . .

check aliasing type: llvm::AliasSet::isMustAlias(), . . .

6set to NULL
Michele Scandale <scandale@elet.polimi.it> 45

LLVM Passes

Memory Dependence Analysis
Alias Analyzer High-level Interface

The llvm::MemoryDependenceAnalysis wraps alias analysis to answer queries in
the following form:

let %foo be an instruction accessing memory. Which preceding
instructions does %foo depends on?

Reads:

stores writing memory
locations aliases with the
one references by %foo

Writes:

loads reading memory
locations aliased with the
one referenced by %foo

Michele Scandale <scandale@elet.polimi.it> 46

LLVM Passes

Memory Dependence Analysis
APIs

Let %foo be a llvm::Instruction accessing memory:

call llvm::MemoryDependenceAnalysis::getDependency(...)

you get a llvm::MemDepResult

Dependencies are classified:

llvm::MemDepResult::isClobber(): an instruction clobbering – i.e.
potentially modifying – location referenced by %foo has been found

llvm::MemDepResult::isDef(): an instruction defining – e.g. writing – the
exact location referenced by %foo has been found

llvm::MemDepResult::isNonLocal(): no dependency found on %foo basic
block

llvm::MemDepResult::isNonFuncLocal(): no dependency found on %foo
function

Michele Scandale <scandale@elet.polimi.it> 47

LLVM Passes

Contents

1 Normalization Passes

2 Analysis Passes

3 Conclusions

4 Bibliography

Michele Scandale <scandale@elet.polimi.it> 48

LLVM Passes

Conclusions

Inside LLVM there a lot of passes:

normalization put program into a canonical form

analysis get info about program

Please remember that

a good compiler writer re-uses code

check LLVM sources before re-implementing a pass

Michele Scandale <scandale@elet.polimi.it> 49

LLVM Passes

Contents

1 Normalization Passes

2 Analysis Passes

3 Conclusions

4 Bibliography

Michele Scandale <scandale@elet.polimi.it> 50

LLVM Passes

Bibliography I

LLVM Community.
Autovectorization in LLVM.
http://llvm.org/docs/Vectorizers.html.

LLVM Community.
LLVM Coding Standards.
http://llvm.org/docs/CodingStandards.html.

LLVM Community.
LLVM Passes.
http://llvm.org/docs/Passes.html.

LLVM Community.
LLVM Programmer’s Manual.
http://llvm.org/docs/ProgrammersManual.html.

Michele Scandale <scandale@elet.polimi.it> 51

LLVM Passes

Bibliography II

Ettore Speziale.
Compiler Optimization and Transformation Passes.
https://github.com/speziale-ettore/COTPasses.

Chris Lattner and Vikram Adve.
LLVM Language Reference Manual.
http://llvm.org/docs/LangRef.html.

Chris Lattner and Jim Laskey.
Writing an LLVM Pass.
http://llvm.org/docs/WritingAnLLVMPass.html.

Michele Scandale (forked from Ettore Speziale).
Compiler Optimization and Transformation Passes.
https://github.com/michele-scandale/COTPasses.

Michele Scandale <scandale@elet.polimi.it> 52

	Normalization Passes
	Analysis Passes
	Conclusions
	Bibliography

