
Compiler Techniques for Security

Alessandro Barenghi

Dipartimento di Elettronica e Informazione e Bioingegneria (DEIB)
Politecnico di Milano

alessandro.barenghi - at - polimi.it

April 15, 2015

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 1 / 1



Overview

Lesson contents

The typical use of a compiler is to translate high level code →
machine executable code

To this end, the compiler employs frameworks to systematically
analyze the code

One of the most employed ones is DataFlow Analysis, which you have
already seen

DataFlow Analysis (DFA) can be exploited to detect at compile time
security vulnerabilities

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 2 / 1



Security issues in cryptography

Common attacks

In this lesson we will tackle security issues with symmetric
cryptographic algorithms

Such algorithms mix together the known input (plaintext) and a
secret key to yield a non intelligible ciphertext

It is unfeasible to retrieve the key from plaintexts and ciphertexts only

Common attacks to these algorithms try to break them “at-the-ends”
i.e. only employing the mathematical structure of the algorithm

Side Channel Attacks (SCAs) take into account the fact that the
algorithms are actually run on a device

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 3 / 1



Attack techniques

Taxonomy

Side Channel Attacks (SCAs) are split into two categories:

Passive SCAs: These attacks rely on observing the device during its
regular functioning, recording environmental parameters

The correlation between the recorded parameter and the values being
computed is exploited

Typical environmental parameters: power consumption, EM emissions

Active SCAs: These attacks disturb the correct execution of a
cipher, leading to an erroneous result.

The correlation between a correct and a wrong ctx, or the fact itself
that the computation failed are exploited

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 4 / 1



Attack techniques

Passive SCAs

We will use as a case study the power consumption side channel

Key idea: the power consumption of a computing device depends on
the values being computed

The same ideas can be applied to other different side channels, with
the proper adaptations

The information leaked on the side channel can be exploited with
different methods:

Simple Power Analysis (SPA): The attacker exploits the
key-dependencies in the control flow of the algorithm
Differential Power Analysis (DPA) and derivates: The attacker
exploits the key-dependencies in the data flow of the algorithm

Both methods rely on measuring the power consumption of the device
during a cipher computation

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 5 / 1



Differential Power Attacks

General Workflow

To perform Differential Power Analysis (and derived ones) we focus
on data-dependent power consumption variations

The first step is to measure the side-channel while a computational
operation involving a small part of the key is performed

The attacker separately makes an hypothesis on the value of the
measurement, guessing the value of the part of the key (i.e. one
hypothesis per possible value)

The attacker checks which hypothesis predicts correctly the
measurement and obtains the key part

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 6 / 1



Differential Power Attacks

Simplifying assumptions

We will, at first, do some simplifying assumptions for clarity’s sake

In practice, there is a way to deal with them all

Assume thus that :
1 Perfectly Timed We know exactly the time instant when every

operation of the cipher is performed
2 Noise Free We are able to measure perfectly the power consumption

of the portion of the device performing the actual encryption
3 White Box We know perfectly the implementation, down to the single

logic gate/assembly instruction level.

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 7 / 1



Overview

Differential Power Attack workflow

Correct 
Key GuessKnown Input 

Values

Device Measure

Correlation
Power 

Consumption
Prediction

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 8 / 1



Hypotheses on intermediate values

Predicting the power consumption

The only way for an attacker to predict the data dependent part of
the power consumption is to know the computed data

The attacker does not know the secret key, he’s forced to guess its
value, but this would imply a full-scale bruteforce attack

Key Idea: the secret key is directly employed through small
independent computations (f.i. bitwise XORs)

Model only a small part of the key-involving operations, say, 8 bits

Compute a hypothetical value for the data depending on the guessed
8-bit key value and the known input to the device

The result is a list of 8-bit hypothetical values, each one relying on a
different key guess

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 9 / 1



Hypotheses on intermediate values

Case Study: AES

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKeyRegular Rounds
Repeated

9x for AES-128
11x for AES-192
13x for AES-256

Final Round
No MixColumns

Operation 
Included

Plaintext

Ciphertext

We choose, as the
value to be predicted,
the input to the last
AddRoundKey
operation

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 10 / 1



Hypotheses on intermediate values

Last AddRoundKey

Secret Key

Ciphertext

Hypothesized Value

A convenient place to
make prediction in
AES-128 is the last
AddRoundKey operation

Since we know the
ciphertext in full, we can
predict some values of the
state before the ARK,
guessing the key bits

Knowing one bit of the
ciphertext, and guessing
the value of a 8 key bits
we will hypothesise a
8-bits of the cipher state

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 11 / 1



Consumption modelling

The dynamic power consumption scales linearly with the number of
logic gates and the number of wires switching state

Possible models for dynamic power consumption are:

Hamming weight of the predicted value: models the energy necessary
to pull up the wires representing the result during the computation
Hamming distance between two different state bit values: models the
switching activity of the D-latches (one bit registers) when they toggle
to store the output of the operation. This model assumes that the
previous value contained in the latches is known to the attacker.

Both models fit reasonably well the dynamic power consumption of
the circuit under the assumption that each bit takes the same amount
of energy to be computed

Notable exceptions (f.i. outputs of the DES S-Boxes) may show
better correlation with a weighted hamming distance model

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 12 / 1



Statistical hypothesis checking

Once the attacker has gathered power measurements and computed
power consumption hypotheses for a statistically significant number
of inputs (≥ 30), he checks which one is the correct power
consumption prediction

Only the correct power consumption prediction will match the actual
behaviour of the device, thus validating the guess on the secret key

Hypothesis checking can be done through a variety of statistical tools.
We will see Pearson’s linear correlation coefficient

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 13 / 1



Hypothesis checking - CPA

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

S
am

p
le

 P
ea

rs
on

 C
oe

ffi
ci

en
t

Key Guess

Figure: Sample Pearson correlation Coefficients for the attack against AES

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 14 / 1



Relaxing Assumptions - Timing

Figure: Sample Pearson coefficients for all the time instants sampled

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 15 / 1



Automated Analysis

Automating side channel vulnerability analysis

Definition of a Security-oriented data-flow analysis (SDFA)
assessing the Instruction Resistance of SW cipher instructions with
bit-level accuracy

Employ a LLVM pass to assess the instruction resistance without
profiling the power consumption of the underlying platform

Automated application of provably secure countermeasures only to
the instructions needing protection

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 16 / 1



New passes for LLVM

Security-oriented Compiler Pipeline

LLVM compiler pipeline with specialized passes to perform SDFA and
countermeasure application

Analysis and transformation performed on the LLVM IR

F
ro

n
t-

E
n

d

O
p

ti
m

iz
er

S
D

FA

M
as

ki
n

g
A

p
p

lic
at

io
n

B
ac

k-
E

n
d

Control-Flow
Normalization

Source
code with

custom
attributes

IR0 IR1 IR2

IR2IR
′
1

IR3

Machine
code

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 17 / 1



Instruction Resistance

Definition

Given a generic IR instruction I with a size(I)-bit output value

The resistance R(I) is the minimum number of key material bits
influencing any of the output bits of I

The attacker needs to perform at least 2R(I) key guesses to predict a
bit of the output of I

If the output of I does not depend on the key: R(I) =∞

Example
int cipher(int k, int p) {

int r=10;

for (int i=0;i<r;++i) {

p=p^k;

p=(p<<8|p>>24);

}

return p;

}

Key bits influencing the lsb

I
Round

1st 2nd 3rd [4th, r -th]

xor 0 0, 8 0, 8, 16 0, 8, 16, 24
shl 8 8, 16 8, 16, 24 0, 8, 16, 24
ashr 0, 8, 16, 24
or 8 8, 16 8, 16, 24 0, 8, 16, 24

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 18 / 1



Security oriented DFA

Analysis step by step

1 Identify instructions defining key material

2 Identify instructions using attacker known material

3 Compute instruction resistance via forward SDFA

4 Compute instruction resistance via backward SDFA

5 Compute single instruction resistance

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 19 / 1



Security oriented DFA

Identify key material

The first step is to detect which CFG nodes are defining key material
(user key + values derived only from it)

The variables containing the user key are marked in the source
through a language attribute

Clang lowers the attribute as metadata attached to the load
operations of those variables

The remaining key material nodes are computed adding to the key
material node set K all the CFG nodes using only values defined by
instructions in K until a fixpoint is reached

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 20 / 1



Security oriented DFA

Identify known material

The second step is to detect the cipher nodes, i.e. the ones
combining key material and inputs

The plaintext is marked in the source code via a language attribute

Clang lowers the attribute as metadata attached to the load
operations of the plaintext

The cipher node set C is initialized with the nodes marked with the
metadata and all the CFG nodes which use at least a value defined by
an instruction in C are added up to a fixpoint

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 21 / 1



Forward DFA

Local SDFA definition

The forward DFA computes the dependence of each bit of the value
defined by an operation from the key material

The DFA is defined through the usual dataflow equations:

in(I) =

{
∅, if pred(I)=∅
out(J), if pred(I)={J}

out(I) = Fop(I)(in(I))

where Fop(I)() is a transfer function depending on the nature of I

The dependencies of a single bit of the output of I from the key
material are modeled as a vector of booleans

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 22 / 1



Forward DFA

Fop(I)() - bitwise operations

For bitwise instructions combining two values, Fop(I)() adds the
dependencies of the corresponding bits via inclusive or of their
boolean vectors

Bitwise instructions employing an operand are properly dealt with
(e.g. masked out bits get their dependencies blanked)

Load operations of key values simply initialize each bit of the loaded
value as depending on itself

Shifts and arithmetic shifts shift around the boolean vectors of
dependencies along with the bits

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 23 / 1



Forward DFA

Fop(I)() - loads and arithmetics

Load operations from lookup tables (common in block ciphers to
compute nonlinear functions), where the index of the loaded value
depends on the key diffuse the cumulative dependencies of all the
input bits over all the outputs

Additions and subtractions are considered, through a conservative
estimate from a defender point of view, as bitwise operations

Multiplications and divisions are considered to be diffusing the
dependencies of their operand over all the bits of the result

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 24 / 1



Forward DFA

global definition and loop peeling

To tackle a global SDFA a meet over all paths strategy is employed at
control flow convergence points

However, as this may cause a precision loss in the analysis, loop
peeling is applied until the information coming from all the
convergent edges is the same

Conditional constructs, which are seldom appearing in block ciphers,
are converted into straight instruction sequences through
arithmetic-predication based if-conversion

Note that in this case, the purpose of the if-conversion is to allow a
deterministic analysis, and not to enhance performances, thus it is
applied even if the if construct body has a significant size

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 25 / 1



Backward DFA

Same principle, reverse direction

Since it is possible for an attacker to employ either the inputs or the
outputs of a cipher to derive power consumption hypotheses, a
Backward SDFA is necessary

In this case, the starting point for an attacker are the store operations
of the ciphertext

The analysis is defined in a similar way to the Forward DFA, simply
taking care of mirroring the effect of the dataflow equations

loop peeling and if-conversions are applied in this case too (basically,
the same normalized form employed for the forward SDFA is
employed)

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 26 / 1



Instruction Resistance Computation

Results

Once both the forward and backward SDFA are run, all the
information on key dependencies is available

If desired, the cipher implementer can examine the dependencies in
detail

To extract the instruction resistance R(I) the analysis

Counts the number of key bits on which an output bit depends
according to both Forward SDFA and Backward SDFA
Selects the minimum amount of key bit dependencies among all the
output bits of the operation as the resistance for I

Instruction with a resistance level below a sensible threshold (e.g. 80
bits) are the ones which should be protected

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 27 / 1



Instruction Resistance Computation

Results - AES

0 100 200

0

2

4

6

8

10

Instructions

R
o
u
n
d
s

1

32

64

96

128

A. Barenghi (DEIB) Compiler Techniques for Security April 15, 2015 28 / 1


	Introduction
	Power consumption measurement
	Differential Power Analysis

