

A brief introduction to
Nvidia CUDA

Andrea Di Biagio
dibiagio@elet.polimi.it

Rendering Pipeline

NVidia GeForce 6800

NVidia GeForce 8800 GT

CUDA
● CUDA is a scalable parallel programming model

and a software environment for parallel
computing
– Expose the computational power of NVIDIA GPUs

– Enable GPU computing

● Minimal extensions to familiar C/C++
environment

● Heterogeneous serial-parallel programming
model

● NVIDIA’s TESLA architecture accelerates CUDA

CUDA - Some design goals

● Scale to 100’s of cores, 1000’s of parallel
threads

● Let programmers focus on parallel algorithms
● Enable heterogeneous systems

– CPU + GPU
● CPU and GPU are separate devices with

separate DRAMs

CUDA - kernels and threads
● Parallel portions of an application are executed

on the device as kernels.
– One kernel is executed at a time

– Many threads execute each kernel

● Differences between CUDA and CPU threads
– CUDA threads are extremely lightweight

– Very little creation overhead

– Instant switching

● CUDA uses 1000s of threads to achieve
efficiency while Multi-core CPUs can use only a
few

Arrays of Parallel Threads

● A CUDA kernel is executed by an array of
threads
– All threads run the same code

– Each thread has an ID that it uses to compute
memory addresses and make control decisions

● Cooperation between threads is achieved via
shared memory.
– A group of threads can share data through a very

little shared memory.

– Synchronization mechanisms are needed in order
to grant coherency in memory accesses

KERNEL
EXECUTION

● A Kernel launches a
grid of thread blocks

● Threads within a
block cooperate via
shared memory

● Threads in different
blocks cannot
cooperate

CUDA - Memory Model

A SIMT execution model

Every two GPU's clock cicles a batch
of thread (called warp) is scheduled
for execution.

Similar to a SIMD execution, however
the control flow may diverge for some
threads in a warp.

Threads in a warp can be active or not

A thread can access data located in
several memory spaces

Depending on the memory, access
times can be faster or slower

Increment array example

Managing Memory

● CPU (Host) and GPU (Device) have separate
memory spaces.

● Communication is achieved via bus transfers
from the host memory to the device memory
and vice versa.

Synchronization

● From CPU code
– A process can wait for the termination of a device

kernel computation

– memcpy operations from host to device are
synchronized by default.

● From device code
– The builtin function
__synchtreads()synchronizes all threads in a
block

● Useful when threads are concurrently accessing to a
shared location in memory

CUDA - Framework Overview

CUDA - compilation process

Website

CUDA WEBSITE -- http://www.nvidia.com/cuda

