A brief introduction to

Nvidia CUDA

NWVIDVA.

Andrea Di Biagio
dibiagio@elet.polimi.it

Rendering Pipeline

Application

Geometry

Rasterization

'

Composite

GPU

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D (in parallel)

Generate fragments from 2D
geometry (in parallel)

Combine fragments into image

NVidia GeForce 6800
oot v (Vertex)

Trlanglf Setup

mﬂhader Instructmn Dlspatch
l L % |II|I|I|IL % |l|l_

= i e e e

Fragrnentl Crossbar

Partition Partition Partition Partition

NVidia GeForce 8800 GT

Host CPU [Bridge — System memory

GFU

Host interface |
I

Viewport/clip/

Input assembler setup/raster/zcull
[[
Veertex work Pixel work Compute work
distribution distribution distribution
I [[
I I I I I I
TR TR PG TG TR TP TR TG
I]I |l I I{ [l [{ I I{ |1 [[]1 |
I |1 1|l I I [l [{ I I{ |1 [[]1 |
EM Sk S SM EM Shd M EM M S Sl EM EM EM EM M

T

o e o
" = = -

=

=

,E = e
({0

OEEELE]
OEIETT]
0T
OCEEETE]
BEEET]
DG
0T
OEEETE]

]

|T|
BEEEL]
DG
0L
OEEETE
BEEEL]
DG

OEEIET

[ianan
JOEEET]

IOEEEE
fEEEL
fEEEEL]
N onan

I58

Shamo
memis

T

Shar | | Shar |
e momen oo

i

I

| =
Texhure

|l

Shamel Fnweed
Ty | il
Texlure uril

:

Is
]
|
Ig
all E
I?
]

7

ROP ROP

B
|
|
|

ROP *

DRAM DRAM DREAM DRAM DRAM DRAM

—

Hl

|

i

TPC

Geometry controller

3 lE::I *HE::I*l IE;:I*| |EII:I*I|E::I*| |

e
5
:-.|

1._|
LY
L]

oM SM
| cache | cache
C cache E—
SP gp e -
SFU | SFU SFU || SFU
onared Shared
memary ey
Texture unit

CUDA

CUDA Is a scalable parallel programming model
and a software environment for parallel
computing

- Expose the computational power of NVIDIA GPUs

- Enable GPU computing

Minimal extensions to familiar C/C++
environment

Heterogeneous serial-parallel programming
model

NVIDIA's TESLA architecture accelerates CUDA

CUDA - Some design goals

Scale to 100’s of cores, 1000’s of parallel
threads

Let programmers focus on parallel algorithms
Enable heterogeneous systems
- CPU + GPU

CPU and GPU are separate devices with
separate DRAMs

CUDA - kernels and threads

» Parallel portions of an application are executed
on the device as kernels.

- One kernel Is executed at a time
- Many threads execute each kernel

e Differences between CUDA and CPU threads

- CUDA threads are extremely lightweight
- Very little creation overhead
- Instant switching

e CUDA uses 1000s of threads to achieve
efficiency while Multi-core CPUs can use only a
few

Arrays of Parallel Threads

A CUDA kernel Is executed by an array of
threads

— All threads run the same code

- Each thread has an ID that it uses to compute
memory addresses and make control decisions

» Cooperation between threads is achieved via
shared memory.

- A group of threads can share data through a very
little shared memory.

- Synchronization mechanisms are needed In order
to grant coherency In memory accesses

KERNEL

EXECUTION

A Kernel launches a
grid of thread blocks

T
b

nreads within a
ock cooperate via

S

T

nared memory

hreads In different

blocks cannot
cooperate

Grid

Block (0, 0)

Y

Block (1,0) Block(2,0)

R

Block (0, 1)~

Block (1, 1) -Block(2,1)

Block (1, 1)

CUDA - Memory Model

A SIMT execution model

Every two GPU's clock cicles a batch
of thread (called warp) is scheduled
for execution.

Similar to a SIMD execution, however
the control flow may diverge for some
threads in a warp.

Threads in a warp can be active or not

A thread can access data located in
several memory spaces

Depending on the memory, access
times can be faster or slower

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Increment array example

CPU program CUDA program

void inc_cpu(int *a, int N) __global__ void inc_gpu(int *a, int N)
{ {
int idx; int idx = blockldx.x * blockDim.x
+ threadldx.x;
for (idx = 0; idx<N; idx++) if (idx < N)
alidx] = afidx] + 1, G——— [idx] = a[idx] + 1;
} }

int main() int main()

{ {

inc_cpu(a, N); dim3 dimBlock (blocksize);
} dim3 dimGrid(ceil(N / (float)blocksize));
inc_gpu<<<dimGrid, dimBlock>>>(a, N);

}

Managing Memory

« CPU (Host) and GPU (Device) have separate
memory spaces.

e Communication is achieved via bus transfers
from the host memory to the device memory
and vice versa.

Multiprocessor

‘ Multiprocessor

Multiprocessor

Chipset | 3 Registers
Shared Memory

Synchronization

* From CPU code

- A process can walit for the termination of a device
kernel computation

- mentpy operations from host to device are
synchronized by default.

e From device code

— The builtin function
__syncht reads() synchronizes all threads in a

block

» Useful when threads are concurrently accessing to a
shared location in memory

CUDA - Framework Overview

CUDA - compilation process

C/C++ CUDA

Application

CPU Code
Virtual

PTX to Target Phy5|ca|

Compiler

Target code

Website

AVIDIA.

CUDA WEBSITE -- http://www.nvidia.com/cuda

