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CUDA

CUDA Is a scalable parallel programming model
and a software environment for parallel
computing

- Expose the computational power of NVIDIA GPUs

- Enable GPU computing

Minimal extensions to familiar C/C++
environment

Heterogeneous serial-parallel programming
model

NVIDIA's TESLA architecture accelerates CUDA



CUDA - Some design goals

Scale to 100’s of cores, 1000’s of parallel
threads

Let programmers focus on parallel algorithms
Enable heterogeneous systems
- CPU + GPU

CPU and GPU are separate devices with
separate DRAMs



CUDA - kernels and threads

» Parallel portions of an application are executed
on the device as kernels.

- One kernel Is executed at a time
- Many threads execute each kernel

e Differences between CUDA and CPU threads

- CUDA threads are extremely lightweight
- Very little creation overhead
- Instant switching

e CUDA uses 1000s of threads to achieve
efficiency while Multi-core CPUs can use only a
few



Arrays of Parallel Threads

A CUDA kernel Is executed by an array of
threads

— All threads run the same code

- Each thread has an ID that it uses to compute
memory addresses and make control decisions

» Cooperation between threads is achieved via
shared memory.

- A group of threads can share data through a very
little shared memory.

- Synchronization mechanisms are needed In order
to grant coherency In memory accesses
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CUDA - Memory Model

A SIMT execution model

Every two GPU's clock cicles a batch
of thread (called warp) is scheduled
for execution.

Similar to a SIMD execution, however
the control flow may diverge for some
threads in a warp.

Threads in a warp can be active or not

A thread can access data located in
several memory spaces

Depending on the memory, access
times can be faster or slower

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1




Increment array example

CPU program CUDA program

void inc_cpu(int *a, int N) __global__ void inc_gpu(int *a, int N)
{ {
int idx; int idx = blockldx.x * blockDim.x
+ threadldx.x;
for (idx = 0; idx<N; idx++) if (idx < N)
alidx] = afidx] + 1, G——— [idx] = a[idx] + 1;
} }

int main() int main()

{ {

inc_cpu(a, N); dim3 dimBlock (blocksize);
} dim3 dimGrid( ceil( N / (float)blocksize) );
inc_gpu<<<dimGrid, dimBlock>>>(a, N);

}




Managing Memory

« CPU (Host) and GPU (Device) have separate
memory spaces.

e Communication is achieved via bus transfers
from the host memory to the device memory
and vice versa.

Multiprocessor

‘ Multiprocessor

Multiprocessor

Chipset | 3 Registers
Shared Memory




Synchronization

* From CPU code

- A process can walit for the termination of a device
kernel computation

- mentpy operations from host to device are
synchronized by default.

e From device code

— The builtin function
__syncht reads() synchronizes all threads in a

block

» Useful when threads are concurrently accessing to a
shared location in memory



CUDA - Framework Overview




CUDA - compilation process

C/C++ CUDA
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Website

AVIDIA.

CUDA WEBSITE -- http://www.nvidia.com/cuda



