Alessandro Barenghi
Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

June 27, 2011




By now , you should be familiar with...

@ System administration and userspace system programming
@ Network administration and userspace network programming

@ Basic Linux kernel module programming




Lesson contents

@ Wait-free synchronization mechanisms

o Netfilter internal structure
@ A new match rule for Netfilter

@ A new target for Netfilter




Lock- and Wait- freedom

Overview

@ In synchronization mechanisms, a key issue is preventing
deadlocks

@ In case a mechanism warrants that every entity accessing the
protected region will gain access eventually, it is called
lock-free

@ In case the access will necessarily happen within a bounded
number of steps, it is also wait-free

@ Lock-freedom warrants that a system will not hang,
wait-freedom that noone will starve

@ Only a few wait free algorithms are known in literature: we
will tackle circular buffers and read-copy-update mechanisms

v




Circular buffers

Overview

@ Circular buffers are a memorisation structure which can be
accessed in a lockless, wait-free fashion

@ The key idea is that a memory buffer is represented as circular
instead of linear

@ This implies that writing beyond the end of the buffer starts
writing back from the beginning

@ The most common implementation involves two cursors, one
pointing to the beginning of the valid data, the other to the
end

o Key element : can be implemented even without atomic
variables




Circular buffers

Issues and solutions

@ Only one reader or writer is admitted to the structure

@ There is an issue when the buffer is completely full as start
and end pointers will be in the same position as the empty
buffer

@ Some viable solutions are:

o Use indices instead of pointers: no extra variables, costs a

modulo operation each access?

o Use a fill counter: needs only an additional variable but is a
pain to track it properly

o Always keep one cell open: lose an element, without any other
overhead (chosen in Linux kernel implementation)

“may not be that slow if the modulo is 2"




Circular buffers

Linux Kernel implementation

@ Implementing a circular buffer is rather straightforward, any
plain implementation will work

@ Linux kernel offers a standard three pointer structure to
uniform the implementation in circ_buf.h
@ The header also includes a couple of helper macros
o CIRC_CNT : returns the used space in the buffer
o CIRC_SPACE : returns the free space in the buffer
o CIRC_CNT_TO_END : returns the used slot count up to the
(linear) end of the buffer
o CIRC_SPACE_TO_END : return the space count up to the (linear)
end of the buffer )




Read Copy Update

o Fully lockless read for many readers and wait-free write is
achievable via Read-Copy-Update constructs

@ RCUs are a relatively recent (2006) strategy to avoid update
conflicts on a shared variable

@ They are now implemented in both the Linux kernel and as a
user space available library liburcu

@ The key idea is to decouple the writing phase from the
removal of the old data




Read Copy Update

Roles

@ In the regular working of RCUs there are three key roles :

o Reader: The reader needs to access the latest, fully written
data: it is the one effectively locking the data

o Updater: The updater needs to change the data: it is allowed
to do so on a shadow copy

o Reclaimer: The reclaimer is in charge of swapping the old data
with the fresh ones only when there are no longer any readers
locking the old

@ As the readers are provided a lock on the last, fully updated,
copy of the data, no risks of read hazards are possible




Read Copy Update

@ RCUs provide a very fast, lockless, read access to many
readers, even in concurrency,

o It is critical that only a single updater acts at a time

@ The locking taken by the updater is no big deal, since the
update is warranted to be wait free

@ The whole structure can be implemented without the use of
atomic variables )




Read Copy Update

Linux Kspace RCU

@ The Linux kernel offers a full fledged, simple RCU API:

o rcuread lock() / rcuread unlock() allow the readers to
assert a lock on a specific version of the data

o rcu_dereference() and rcu_assign pointer() allow the
updater to access properly the data to be updated

o synchronize_rcu() Allows to wait until all the pre-existing
RCU read critical sections have completed

o call rcu() Sets up a callback function to be invoked when all
the read locks expire : this allows the updater to move on with
other tasks leaving the RCU update safely in background

@ The same APlIs are available in both garden variety and soft
IRQ blocking flavour via adding a _bh suffix to the call name

v




Read Copy Update

Linux Kspace RCU Visual summary

rcu_assign_pointer()

rcu_dereference()

call_rcu()
reu_read_lock() synchronize_rcu()

rcu_read_unlock()




Netfilter inner structure

Firewalling from the other side

@ On kernel side, the netfilter structure is practically represented
by five hooks

@ Each hook corresponds to one of the five fundamental tables
we have seen in the firewalling and NAT lessons

@ It is possible to directly bind to one of the five fundamental
hooks...

@ or to modularly add a match or a target rule (more flexible,
more reusable)




Netfilter inner structure

Adding matches and targets

@ In order to add a new match or a new target, the new Netfilter
tables provides proper registration/deregistration functions

@ All the functions related to the newest Netfilter tables are
prefixed with the xt_ prefix

@ These functions act on IPv4 and IPv6 likewise , as on any
other transport protocol which will be implemented in future

@ The full description of the new match/target is provided via a
static structure which must be filled prior to registering the
module




Netfilter inner structure

Roles

o After the last reengineering, there is a strict splitting among
the roles of matches and targets

@ Matching rules should only check if a particular condition is
true or false and return the result without affecting the packet

o Target rules are only allowed to perform actions on a packet
(mangle it, derive informations, log, blink leds) but should act
on any packet buffer passed to them

@ The packets are handled in the form of a C union sk_buff
which is passed by reference to both matchers and targets

@ Each rule added to a hook invokes at first the matching
function and, if it returns true, it calls the corresponding
target function




Netfilter inner structure

Rule Codes

@ In order to perform actions on the packets, other that
mangling, the target main function should return one of the
following rule codes:

o NF_ACCEPT: Accept the packet and send it further up (or
down) the network stack

o NF_DROP: drop the packet instantly

o NF_REPEAT: repeat the hook function from scratch

o NF_STOLEN: similar to NF_DROP but the packet effectively
vanishes from the counters?

o NF_QUEUE: queue the packet to userspace via Netlink

o XT_CONTINUE: continue to the next rule in the hook

“it is assumed that the programmer takes care of the packet memory area
from there onwards




A matching rule

Registering the matcher

@ A new matching rule can be registered and unregistered via
the xt_register match and the xt_unregister match
functions

@ Both functions accept a xt_match structure containing:

o name: the string which will be recognised after the -m option
of the iptables command

o revision: the version of the matcher

o family: the family of protocols on which the matcher acts
(NFPROTO_UNSPEC)

o match: the function pointer to the matching function

o matchsize : the size of the matching function

o me: field set to the macro THIS_MODULE if the match is
intended to be compiled as such




A new target

@ A new target function should be able to handle packets from
every protocol it is registered for

@ The main role of a target function is usually to either mangle
the packet (f.i. TTL modifications) or to collect statistics

o It is a good praxis to register targets with a name fully in
capitals, in order to distinguish them from the matching
modules

@ Remember to recompute checksums in case the packet has
been mangled or it will not be considered valid afterwards




A new target

Registering the target

@ A new targeting rule can be registered and unregistered via
the xt_register_targets and the xt_unregister_targets
functions

@ Both functions accept a xt_target structure containing:

o name: the string which will be recognised after the -m option
of the iptables command

o revision: the version of the matcher

o family: the family of protocols on which the matcher acts
(NFPROTO_UNSPEC)

o target: the function pointer to the target function

o targetsize : the size of the target function

o checkentry : a function pointer to a sanity checker for target
parameters

o me: field set to the macro THIS_MODULE if the match is
intended to be compiled as such




