
Kernel Module Programming

Alessandro Barenghi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

barenghi - at - elet.polimi.it

June 27, 2011



Recap

By now , you should be familiar with...

System administration and userspace system programming

Network administration and userspace network programming

Basic Linux kernel module programming



Lesson contents

Overview

Wait-free synchronization mechanisms

Netfilter internal structure

A new match rule for Netfilter

A new target for Netfilter



Lock- and Wait- freedom

Overview

In synchronization mechanisms, a key issue is preventing
deadlocks

In case a mechanism warrants that every entity accessing the
protected region will gain access eventually, it is called
lock-free

In case the access will necessarily happen within a bounded
number of steps, it is also wait-free

Lock-freedom warrants that a system will not hang,
wait-freedom that noone will starve

Only a few wait free algorithms are known in literature: we
will tackle circular buffers and read-copy-update mechanisms



Circular buffers

Overview

Circular buffers are a memorisation structure which can be
accessed in a lockless, wait-free fashion

The key idea is that a memory buffer is represented as circular
instead of linear

This implies that writing beyond the end of the buffer starts
writing back from the beginning

The most common implementation involves two cursors, one
pointing to the beginning of the valid data, the other to the
end

Key element : can be implemented even without atomic
variables



Circular buffers

Issues and solutions

Only one reader or writer is admitted to the structure

There is an issue when the buffer is completely full as start
and end pointers will be in the same position as the empty
buffer

Some viable solutions are:

Use indices instead of pointers: no extra variables, costs a
modulo operation each accessa

Use a fill counter: needs only an additional variable but is a
pain to track it properly
Always keep one cell open: lose an element, without any other
overhead (chosen in Linux kernel implementation)

amay not be that slow if the modulo is 2n



Circular buffers

Linux Kernel implementation

Implementing a circular buffer is rather straightforward, any
plain implementation will work

Linux kernel offers a standard three pointer structure to
uniform the implementation in circ buf.h

The header also includes a couple of helper macros

CIRC CNT : returns the used space in the buffer
CIRC SPACE : returns the free space in the buffer
CIRC CNT TO END : returns the used slot count up to the
(linear) end of the buffer
CIRC SPACE TO END : return the space count up to the (linear)
end of the buffer



Read Copy Update

Overview

Fully lockless read for many readers and wait-free write is
achievable via Read-Copy-Update constructs

RCUs are a relatively recent (2006) strategy to avoid update
conflicts on a shared variable

They are now implemented in both the Linux kernel and as a
user space available library liburcu

The key idea is to decouple the writing phase from the
removal of the old data



Read Copy Update

Roles

In the regular working of RCUs there are three key roles :

Reader: The reader needs to access the latest, fully written
data: it is the one effectively locking the data
Updater: The updater needs to change the data: it is allowed
to do so on a shadow copy
Reclaimer: The reclaimer is in charge of swapping the old data
with the fresh ones only when there are no longer any readers
locking the old

As the readers are provided a lock on the last, fully updated,
copy of the data, no risks of read hazards are possible



Read Copy Update

Pros and Cons

RCUs provide a very fast, lockless, read access to many
readers, even in concurrency,

It is critical that only a single updater acts at a time

The locking taken by the updater is no big deal, since the
update is warranted to be wait free

The whole structure can be implemented without the use of
atomic variables



Read Copy Update

Linux Kspace RCU

The Linux kernel offers a full fledged, simple RCU API:

rcu read lock() / rcu read unlock() allow the readers to
assert a lock on a specific version of the data
rcu dereference() and rcu assign pointer() allow the
updater to access properly the data to be updated
synchronize rcu() Allows to wait until all the pre-existing
RCU read critical sections have completed
call rcu() Sets up a callback function to be invoked when all
the read locks expire : this allows the updater to move on with
other tasks leaving the RCU update safely in background

The same APIs are available in both garden variety and soft
IRQ blocking flavour via adding a bh suffix to the call name



Read Copy Update

Linux Kspace RCU Visual summary

UpdaterReader

Reclaimer

rcu_dereference()

rcu_assign_pointer()

rcu_read_lock()
rcu_read_unlock()

call_rcu()
synchronize_rcu()



Netfilter inner structure

Firewalling from the other side

On kernel side, the netfilter structure is practically represented
by five hooks

Each hook corresponds to one of the five fundamental tables
we have seen in the firewalling and NAT lessons

It is possible to directly bind to one of the five fundamental
hooks...

or to modularly add a match or a target rule (more flexible,
more reusable)



Netfilter inner structure

Adding matches and targets

In order to add a new match or a new target, the new Netfilter
tables provides proper registration/deregistration functions

All the functions related to the newest Netfilter tables are
prefixed with the xt prefix

These functions act on IPv4 and IPv6 likewise , as on any
other transport protocol which will be implemented in future

The full description of the new match/target is provided via a
static structure which must be filled prior to registering the
module



Netfilter inner structure

Roles

After the last reengineering, there is a strict splitting among
the roles of matches and targets

Matching rules should only check if a particular condition is
true or false and return the result without affecting the packet

Target rules are only allowed to perform actions on a packet
(mangle it, derive informations, log, blink leds) but should act
on any packet buffer passed to them

The packets are handled in the form of a C union sk buff

which is passed by reference to both matchers and targets

Each rule added to a hook invokes at first the matching
function and, if it returns true, it calls the corresponding
target function



Netfilter inner structure

Rule Codes

In order to perform actions on the packets, other that
mangling, the target main function should return one of the
following rule codes:

NF ACCEPT: Accept the packet and send it further up (or
down) the network stack
NF DROP: drop the packet instantly
NF REPEAT: repeat the hook function from scratch
NF STOLEN: similar to NF DROP but the packet effectively
vanishes from the countersa

NF QUEUE: queue the packet to userspace via Netlink
XT CONTINUE: continue to the next rule in the hook

ait is assumed that the programmer takes care of the packet memory area
from there onwards



A matching rule

Registering the matcher

A new matching rule can be registered and unregistered via
the xt register match and the xt unregister match

functions

Both functions accept a xt match structure containing:

name: the string which will be recognised after the -m option
of the iptables command
revision: the version of the matcher
family: the family of protocols on which the matcher acts
(NFPROTO UNSPEC)
match: the function pointer to the matching function
matchsize : the size of the matching function
me: field set to the macro THIS MODULE if the match is
intended to be compiled as such



A new target

Structure

A new target function should be able to handle packets from
every protocol it is registered for

The main role of a target function is usually to either mangle
the packet (f.i. TTL modifications) or to collect statistics

It is a good praxis to register targets with a name fully in
capitals, in order to distinguish them from the matching
modules

Remember to recompute checksums in case the packet has
been mangled or it will not be considered valid afterwards



A new target

Registering the target

A new targeting rule can be registered and unregistered via
the xt register targets and the xt unregister targets

functions

Both functions accept a xt target structure containing:

name: the string which will be recognised after the -m option
of the iptables command
revision: the version of the matcher
family: the family of protocols on which the matcher acts
(NFPROTO UNSPEC)
target: the function pointer to the target function
targetsize : the size of the target function
checkentry : a function pointer to a sanity checker for target
parameters
me: field set to the macro THIS MODULE if the match is
intended to be compiled as such


