
front-end

The structure of a compiler

front-end

Source code

Intermediate
representation

back-end

machine code

compiler

Front-end & Back-end

C front-end Pascal front-end

Intel x86
back-end

Motorola 68000
back-end

• The front-end abstracts from the hardware.
• The back-end abstracts from the high level

language.

C front-end

Front-end Structure

front-end

lexical analyzer

Source code

tokenized code

syntax analyzer

any desired output

front-end

Lexical

Relating to words or the vocabulary
of a language as distinguished from
its grammar and construction.

Webster’s Dictionary

Lexical Analysis

• It recognizes patterns in a stream of
characters.

• A pattern represents a category of lexical
elements, named “tokens”.

• Each token can have one or more attributes
describing, for example, its position in the
original text.

WORD a word, made by one or more alphabetical characters
(in upper or lower case);

SPACE a sequence of one or more blank spaces;
Attributes characters constituting the token; position and length

of the token expressed in number of characters;
Input stream

1 2 3 4 5 6 7
1 A s i m p l
2 e e x a m p
3 l e

The result of the lexical analysis over the above text follows:
WORD: ‘A’, (1,1), 1
SPACE: ‘ ‘, (1,2), 1
WORD: ‘simple’, (1,3), 6
SPACE: ‘ ‘, (2,2), 1
WORD: ‘example’, (2,3), 7

Example

The scanner

• A program that performs lexical analysis.

• Construction by hand is a tedious work.

• There are programs that generate scanners
automatically.

flex: a scanner generator

• flex is a scanner generator, a complete
rewriting of the AT&T Unix tool lex.

• You can find flex at the GNU site at the
following address:
www.gnu.org/software/flex/flex.html

• flex is free, and distributed under the terms of
GNU General Public License (GPL).

• A useful book to understand flex is:
lex & yacc, 2nd Edition
by John Levine, Tony Mason & Doug Brown
O’Reilly

How flex Works

flex

Scanner description
(.lex file)

Scanner C source code
(file lex.yy.c)

gcc

Scanner executableInput stream Tokenized
output

%option noyywrap
UPPER [A-Z]
LOWER [a-z]
BLANK []
TAB [\t]
NEWLINE [\n]
%%
{UPPER} { printf("%c",tolower(*yytext));

/* replace uppercase letters
with lowercase ones */}

{NEWLINE} { printf(".\n");
/* replace newlines with a

dot*/}
{BLANK}+ { printf(" ");

/* replace any number of spaces
with a single space */}

%%
int main() { return yylex();}

%{ // A more complicated example
#define max_col 7
%}
%option noyywrap
LETTER [a-zA-Z]
SPACE []
%%
%{
int col=0;
int row=1;

%}
{LETTER}+ {printf("WORD: '%s', (%d,%d),%d\n",

yytext, row, col+1, yyleng);
col=((col+yyleng)<=max_col) ? col+yyleng :

row++,(col+yyleng)%max_col;
}

{SPACE}+ {printf("SPACE: '%s', (%d,%d), %d\n",
yytext, row, col+1, yyleng);

col=((col+yyleng)<=max_col) ? col+yyleng :
row++,(col+yyleng)%max_col;

}
%%
int main() { return yylex();}

The format of a flex input file

definitions
%%
rules
%%
user code

The format of a flex input file (2)

DEFINITIONS
• Name definitions example:
LETTER [a-zA-Z]

• The notation […] represents a class of
character.

• In the rules section, each occurrence of
{LETTER} is substituted by ([a-zA-
Z]).

The format of a flex input file (3)

RULES
• Rule example:
{LETTER}+ {a block of C code}

• Pattern condition: a regular expression;
• Action: a fragment of C code to be

executed each time a token in the input
stream matches the associated pattern.

The format of a flex input file (4)

USER CODE
• User C code is copied to the generated

scanner source “as is”.
• This section can contain routines called by

actions, or code which calls the scanner.

The format of a flex input file (3)

ADDITIONAL CODE
%{
…

%}

• It can be put in the definitions and in the
rules sections.

• This code is copied into the generated
scanner source code as is.

Regular Expression Rules

R the regular expression R
RS the concatenation of R and S
R | S either R or S
R* zero or more R’s
R+ one or more R’s
R? zero or one R’s
R{m,n} a number of R’s ranging from m to n
R{n,} n or more times R’s
R{n} exactly n R’s
(R) (parentheses to override precedence)
R/S R, but only if followed by S
^R R, but only at beginning of a line
R$ R, but only at end of a line
<s1>R R, but only in start condition s1
<s1,…,sn>R R, in any of start conditions s1,…,sn
<*>R R, in any start condition, even an exclusive one

Regular Expression Rules

x matches the character ‘x’
. matches any character except newline
[xyz] any character in the given set (x | y | z)
[a-z] any character in the given range

(a | b |…| z)
[^A-Z] any character but those in the range
{x} expansion of x’s definition
“…” a literal string
\x ANSI-C interpretation of \x, if any,

otherwise the literal x (to escape operators)
\0 the NUL character
<<EOF>> the end-of-file

How the generated scanner works

• It reads the input stream, looking for strings that
match any of its patterns.

• Longest matching rule:
if more than one matching string is found, the
rule that generates the longest one is selected.

• First Rule:
if more than one string with the same length are
found, the rule listed first in the rules section is
selected;

How the generated scanner works (2)

• If no rules were found, the scanner performs the
standard action: the next character in input is
considered matched and it is copied to the output
stream; then the scanner goes on.

• Once the right match is determined, the
corresponding text is made available thru the
global char * variable yytext, and its length
is available in yyleng.

Rule actions

• Each rule can have its own action,
specified as a block of C code.

• The default action is to discard matched
text.

• A ‘|’ symbol in place of a block of C code
instructs flex to use the same rule as the
following pattern.

Special directives in actions
• ECHO copies yytext to the output.
• BEGIN sx:

places the scanner in the corresponding
start condition;

• REJECT chooses the next best matching rule;
• yymore() the next matched text is appended to

yytext.
• yyless(n)

sends back to the input stream all but
the first n characters of the matched
string.

Special directives in actions (2)
• unput(c)sends character c back to the input stream;

WARNING: calls to unput(c) trash the contents of
yytext; therefore contents of yytext must be copied
before calling unput(c), if required.

• input(): consumes the next character in input.

The yylex() scanner function

• Default signature: int yylex()
• You can modify it by, e.g., as follows:

#define YY_DECL float lexscan(float a)

• The yylex input is the global input stream yyin,
which by default is assigned to stdin.

• The yylex output is the global output stream,
yyout which by default is assigned to stdout.

Multiple Scanners

• Sometimes it is useful to have more than one
scanner together.

• A classic example: comments in a C source code.

INITIAL

C source code

COMMENT

/*

*/

comment
body

EOF
ERROR

Start conditions
In flex it is possible to model this behavior as

follows:
%x COMMENT
%option noyywrap
%%
<INITIAL>[^/]* ECHO;
<INITIAL>"/"+[^*/]* ECHO;
<INITIAL>"/*" BEGIN(COMMENT);
<COMMENT>[^*]*
<COMMENT>"*"+[^*/]*
<COMMENT>"*"+"/" BEGIN(INITIAL);
%%
int main(){
return yylex();
}

Start conditions (2)

• A pattern preceded by an <s> start condition is
active only when the scanner is in such a state.

• A start condition can be declared with %x
(exclusive mode) or %s (inclusive mode).

• The special start condition <*> matches every
start condition.

• The initial start condition is INITIAL.
• Start conditions are stored as integer values.
• The current start condition is stored in

YY_START variable.

Example:
%x COMMENT
%option noyywrap
SLASH [/]
STAR [*]
%%
%{

int nesting_level=0;
int comment_caller[10];

%}
<INITIAL>[^/]* ECHO;
<INITIAL>{SLASH}+[^*/]* ECHO;
<INITIAL>{SLASH}{STAR} { comment_caller[nesting_level++]=YY_START;

BEGIN(COMMENT);
}

<COMMENT>[^/*]*
<COMMENT>{SLASH}+[^*/]*
<COMMENT>{SLASH}{STAR} { comment_caller[nesting_level++]=YY_START;

BEGIN(COMMENT);
}

<COMMENT>{STAR}+[^*/]*
<COMMENT>{STAR}+{SLASH} BEGIN(comment_caller[--nesting_level]);
%%
int main() {

return yylex();
}

Good regular expressions

CONCISENESS

%x COMMENT
%option noyywrap
%%
<INITIAL>([^/]*("/"+[^*/])*)* ECHO;
<INITIAL>"/*" BEGIN(COMMENT);
<COMMENT>([^*]*("*"+[^*/])*)*
<COMMENT>"*"+"/" BEGIN(INITIAL);
%%
void main(){

return yylex();
}

Good regular expressions (2)
READABILITY

NOT_SLASH [^/]
NOT_STAR [^*]
NOT_SLASH_STAR [^*/]
SLASH [/]
STAR [*]
%%
<INITIAL>{

({NOT_SLASH}*({SLASH}+{NOT_SLASH_STAR})*)* ECHO;
{SLASH}{STAR} BEGIN(COMMENT);

}
<COMMENT>{

({NOT_STAR}*({STAR}+{NOT_SLASH_STAR})*)*
{STAR}+{SLASH} BEGIN(INITIAL);

}

Common pitfalls

<COMMENT>[^*]* (rule 1)

<COMMENT>"*"+[^/]* (rule 2)

/* * what you want */
rule 2 matches “* what you want *”
rule 1 matches “/”
results: the end of comment is lost.

<COMMENT>([^*]*("*"+[^*/]*)*)* (rule 1)

/* * what you want */
rule 1 matches “* what you want *”
rule 1 matches “/”
results: the end of comment is lost.

Common pitfalls (2)

<INITIAL>”/””*”+ BEGIN(COMMENT); (rule 1)

<COMMENT>[^*]* (rule 2)

/***************/
rule 1 matches “/***************”
rule 2 matches “/”
results: the end of comment is lost.

Stacked start conditions
%x COMMENT
%option noyywrap
%option stack
SLASH [/]
STAR [*]
%%
<INITIAL>{

[^/]* ECHO;
{SLASH}+[^*/]* ECHO;
{SLASH}{STAR} { yy_push_state(YY_START); BEGIN(COMMENT);}

}
<COMMENT>{

[^*/]* ;
{SLASH}+[^*/]* ;
{SLASH}{STAR} yy_push_state(YY_START);
{STAR}+[^*/]* ;
{STAR}+{SLASH} yy_pop_state();

}
%%
int main(int argc, char* argv[]){

argv++; argc--;
yyin=fopen(argv[0],"r");
yylex();

}

Multiple input buffers

• It is sometimes useful to switch among
multiple input buffers.

• A classical example: header files included
in a C source code.

YY_BUFFER_STATE yy_create_buffer(FILE * file, int size)

void yy_switch_to_buffer(YY_BUFFER_STATE buffer)

void yy_delete_buffer(YY_BUFFER_STATE buffer)

YY_CURRENT_BUFFER

Other useful options

• -d enables the debugging mode;
• -s suppresses the default rule and raises an error

whenever text cannot be matched by any
rule;

• -v increases the output verbosity;
• %option yylineno

an integer variable named yylineno stores
the number of line currently being read.

