
Principles
Programming Style
Designing Programs

Testing and Debugging

Best Practices in Programming
from B. Kernighan & R. Pike, “The Practice of Programming”

Giovanni Agosta

Piattaforme Software per la Rete – Modulo 2

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Outline

1 Principles

2 Programming Style
Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

3 Designing Programs
Algorithms and Data Structures
Design Principles

4 Testing and Debugging
Testing

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Motivation

Bad thing that happen with programs

Overly complicated data structures

Too much time spent on finding bugs that should have been
obvious

Excessive use of resources (time, memory)

Lack of program portability

Code so difficult to understand you have to rewrite it entirely

These are the results of programming errors as much as abnormal
program termination or incorrect results!

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Principles

Keep in sight the basic principles

Simplicity Keep programs short and manageable

Clarity Keep programs easy to understand for people and
machines

Generality (Re-)Use and design adaptable solutions

Automation Avoid repetitive, error prone tasks by delegating to
the machine

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

The Techniques

What do we need to learn, then?

Programming Style

Data Structure Construction

Design and Implementation of Algorithms

Isolation through Interfaces

Testing and Debugging

Programming for Portability

Programming for Performance

Tools for Automation

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Naming Conventions
Use descriptive names for globals, short names for locals

An example of bad conventions

f o r (t h e E l e m e n t I n d e x = 0 ;
t h e E l e m e n t I n d e x < number0fE lements ;
t h e E l e m e n t I n d e x++)

e l e m e n t A r r a y [t h e E l e m e n t I n d e x] =
t h e E l e m e n t I n d e x ;

Should be rewritten as

f o r (i = 0 ; i < ne lems ; i ++)
elem [i] = i ;

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Naming Conventions
Be consistent

Inconsistent and redundant use of names

s t ruc t q u e u e {
queueElem ∗queuehead ;
queueElem ∗Tai lOfQueue ;
i n t noOfItemInQ ;
} queue ;

Should be restated as

s t ruc t q u e u e {
queueElem ∗head ;
queueElem ∗ t a i l ;
i n t n i t e m s ;
} queue ; G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Naming Conventions
Use accurate names

Use active names for functions

p u t c h a r (’ \n ’) ;

But ambiguity should be avoided

// i n c o r r e c t
i f (c h e c k o c t a l (c)) . . .

// c o r r e c t
i f (i s o c t a l (c)) . . .

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Indentation

Example of bad indentation

f o r (n++;n<100; f i e l d [n++]= ’ \0 ’) ;
∗ i = ’ \0 ’ ; return (’ \n ’) ;

Reformatting and restructuring

f o r (n++; n < 1 0 0 ; n++)
f i e l d [n] = ’ \0 ’ ;

∗ i = ’ \O ’ ;
return ’ \n ’ ;

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Write expressions in natural form

Avoid negations if possible

i f (! (b l o c k i d < a c t b l k s) | |
! (b l o c k i d >= u n b l o c k s)) . . .

Restructuring to read naturally

i f ((b l o c k i d >= a c t b l k s) | |
(b l o c k i d < u n b l o c k s)) . . .

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Avoid ambiguity by using parentheses

Works, but is hard to read

l e a p y e a r = y % 4 == 0 && y % 100 != 0 | |
y % 400 == 0 ;

Parenthesize to make easier to read

l e a p y e a r = ((y%4 == 0) && (y%100 != 0)) | |
(y%400 == 0) ;

Note that in many cases parentheses are needed to specify
operator precedence!

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Break up complex expressions

Works, but is totally unreadable

∗x += (∗ xp =(2∗k < (n−m) ? c [k+1] : d [k−−]));

Restructure to make easier to read

i f (2∗ k < n−m)
∗xp = c [k +1] ;

e l s e
∗xp = d [k−−];

∗x += ∗xp

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Write for clarity

What does this code do?

subkey = subkey >>
(b i t o f f − ((b i t o f f >> 3) << 3)) ;

Shift bitoff by 3 right, then left → zero the last three bits

The subtraction gets the three removed bits as results

The three last bits of bitoff are used to shift subkey

Restructure to make clear and concise

subkey >>= b i t o f f & 0 x7 ;

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Be careful with side effects!

The order of execution of side effects is undefined

s t r [i ++] = s t r [i ++] = ’ ’ ;

Intent: store blank in both spaces

Effect: depends on when i is updated!

Restructure to make unambiguous

s t r [i ++] = ’ ’ ;
s t r [i ++] = ’ ’ ;

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Expressions and Statement
Be careful with side effects!

Argument evaluation happens before the call

s c a n f (”%d %d” , &yr , &p r o f i t [y r]) ;

Intent: read values from input and store profit for
corresponding yr

Effect: stores profit at previous value of yr

Correct version

s c a n f (”%d” , &y r) ;
s c a n f (”%d” , &p r o f i t [y r]) ;

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Use idioms for consistency

Idioms are conventional ways to express concepts

The language may offer multiple ways to express a concept
(e.g., a loop)

Certain forms are idiomatic, and should be used instead of less
common ones

f o r (i =0; i<N; i ++){ . . . }

i =0; whi le (i<N) { . . . ; i +=1; }

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Indentation

Use consistent indentation

Syntax-driven editing tools may help

indent may also help

Major software projects mandate their own style!

#inc lude <s t d i o . h>

i n t main (i n t argc , char ∗∗ a r g v){
/∗ we aren ’ t check i ng f o r m i s s i n g arg ! ∗/
char ∗ h e l l o s t r i n g=a r g v [1] ;
p r i n t f (”%s \n” , h e l l o s t r i n g) ; /∗ p r i n t the i npu t s t r i n g ∗/
return 0 ; /∗ Succe s s ∗/

}

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Indentation: GNU style

#inc lude <s t d i o . h>

i n t
main (i n t argc , char ∗∗ a r g v)
{

/∗ we aren ’ t check i ng f o r m i s s i n g arg ! ∗/
char ∗ h e l l o s t r i n g = a r g v [1] ;
p r i n t f (”%s \n” , h e l l o s t r i n g) ; /∗ p r i n t the i npu t s t r i n g ∗/
return 0 ; /∗ Succe s s ∗/

}

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Indentation: Linux style

#inc lude <s t d i o . h>

i n t main (i n t argc , char ∗∗ a r g v)
{

/∗ we aren ’ t check i ng f o r m i s s i n g arg ! ∗/
char ∗ h e l l o s t r i n g = a r g v [1] ;
p r i n t f (”%s \n” , h e l l o s t r i n g) ; /∗ p r i n t the i npu t s t r i n g ∗/
return 0 ; /∗ Succe s s ∗/

}

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Indentation: Kernighan & Ritchie style

#inc lude <s t d i o . h>

i n t main (i n t argc , char ∗∗ a r g v)
{

/∗ we aren ’ t check i ng f o r m i s s i n g arg ! ∗/
char ∗ h e l l o s t r i n g = a r g v [1] ;
p r i n t f (”%s \n” , h e l l o s t r i n g) ; /∗ p r i n t the i npu t s t r i n g ∗/
return 0 ; /∗ Succe s s ∗/

}

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Consistency
Indentation: Berkeley style

#inc lude <s t d i o . h>

i n t
main (i n t argc , char ∗∗ a r g v)
{

/∗
∗ we aren ’ t check i ng f o r m i s s i n g arg !
∗/

char ∗ h e l l o s t r i n g = a r g v [1] ;
p r i n t f (”%s \n” , h e l l o s t r i n g) ; /∗ p r i n t the i npu t s t r i n g ∗/
return 0 ; /∗ Succe s s ∗/

}

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Function Macros

Beware the semantics!

Macros work by textual substitution

Multiple instances of an argument may cause multiple
evaluations

This does not happen with functions

C99 supports inline functions, use them instead!

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Naming Conventions
Expressions and Statement
Consistency
Macros and Comments

Comments

Don’t do the following:

Belabor the obvious

Comment bad code instead of rewriting it

Contradict the code

Do the following:

Point out salient details or large-scale view

Write code so that meaning is self-evident

Update comments with the code

Comment functions and global data

Use doxygen for documenting C/C++ code!

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Algorithms and Data Structures
Choosing an algorithm

Assess potential algorithms and data structures

Small-data problems: choose simple solutions

Large-data problems: choose scalable solutions

Choose implementation means

Use language features if possible, libraries otherwise

If you have to design solutions, start from simple ones, then
refine for performance

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Algorithms and Data Structures

Choosing data structures

A small set of data structures covers most problems

Arrays fast but no dynamic shrinking/growing
Lists dynamic shrinking/growing but slow

Trees combine both, but balancing is required
Hash tables combine both, but balancing is required

Specialized data structures might be needed for particular
applications

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Designing Programs

Think first, code later

Search for standard solutions to subproblems

Choose (tentative) algorithms

Design the corresponding data structures

Prototype first, productize later

Production-quality code takes 10x to 100x more time than
prototypes

Prototyping forces clarification of decisions

Start simple, but evolve as needed

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Design Issues

Issues in building components for larger programs

Interfaces provide uniform and convenient services

Information hiding provide straightforward access to components
while hiding implementation details

Resource management manage dynamic memory allocation and
shared information

Error handling detect and report errors

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Library Interfaces

Hiding implementation details

Hide details that are irrelevant to the user

Example: C I/O library, FILE ∗ hides the implementation

Use opaque types if possible

Avoid global variables

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Library Interfaces

Select small, orthogonal set of primitives

Provide just one way to perform each operation

Provide operations that do not overlap

Modify the implementation rather than the interface

If more convenient ways of doing things are desired, use
higher level libraries (wrappers)

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Library Interfaces

Don’t reach behind the user’s back

Do not modify global data or input data (except for output
parameters)

E.g., consider strtok , which destroys the input string

A better implementation could work on a copy

Keep consistency

Use the same semantics for parameters across the whole set of
primitives

Compare stdio .h with string .h

Also, keep consistency with similar libraries and/or libraries
used in the same project

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Resource Management

Allocate and free resources in the same layer

E.g., a library that allocates data should free it

Choose a style and keep it

Write reentrant code: avoid global variables, static local
variables

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

Error Handling

Error detection at low level, handling at high level

Detect error at as low level as possible

Handle error at high level: let caller function decide on
handling

Library functions should fail gracefully (e.g., return NULL
rather than abort)

In C, use errno .h to distinguish between various types of error

Use exceptions for exceptional behaviour

C exception handling: setjmp and longjmp

Very low level mechanism, use only for truly exceptional
behaviour

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Algorithms and Data Structures
Design Principles

User Interfaces

Just because it’s not Graphical, it doesn’t mean it’s not a UI

Text-based programs also have interfaces

The goal is to keep them simple

Also, design the interface to allow both programs and humans
to use them

Error reporting and input interfaces

Provide meaningful error reports

Identify error site (including program name), reason for
failure, hints at how to correct

Use domain-specific mini-languages for complex input

If extensive interaction is needed, consider using a scripting
front-end

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Testing

Overview
Testing vs Debugging vs Correct by Construction

What is debugging?

An attempt to find the error in a program that is known to be
broken

What is testing?

A systematic attempt to break a program you think is working

Limits of testing

You can only demonstrate the presence of bugs, not their
absence

However, correct by construction is unfeasible in most cases

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Testing

Overview
Making Program Correct by Construction

Generate code programmatically

E.g., generate assembly programs from high level languages

Use scripting languages or small ad-hoc languages for
specialized tasks

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Testing

Testing
When to perform testing?

Test code as you write it!

On small code fragments:

Boundary condition testing: check for empty input, overfull
input, exactly full input...

Pre- and post-conditions: check that input and output values
stay within the expected value ranges

Use assert .h to check properties

Defensive programming: handle logically impossible cases,
detecting and reporting errors

Use the error facilities provided by called functions!

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Testing

Testing
Systematic Testing

Test incrementally, but thoroughly

Test incrementally, starting from small code units

Test simple parts or functionalities first

Once simple functionalities work, check more complex cases

Know what to expect as the correct result! Use properties of
the application domain as much as possible

Verify conservation properties (check that data structures are
not destroyed by mistake, and output is consistent with input)

Compare independent implementations

Measure test coverage: check that all code is actually tested
(with tools such as Gcov)

G. Agosta Programming Practice

Principles
Programming Style
Designing Programs

Testing and Debugging

Testing

Testing
Test Automation

Basics

Regression testing: check that a new version obtains the same
results as the previous one

Create tests that are fully self-contained

Use scripting languages (bash, PERL, AWK, Python)

Use system tools: diff, sort, grep, wc, sum

Advanced Test Automation

Large code projects provide specialized automation tools for
testing: Litmus (Mozilla), Google Testing Framework
(Google), xUnit, DejaGNU (GNU)

G. Agosta Programming Practice

	Principles
	Programming Style
	Naming Conventions
	Expressions and Statement
	Consistency
	Macros and Comments

	Designing Programs
	Algorithms and Data Structures
	Design Principles

	Testing and Debugging
	Testing

