
Rules Project Proposals

Piattaforme Software per la Rete
Course Projects, part 2

Giovanni Agosta

Piattaforme Software per la Rete – Modulo 2



Rules Project Proposals

Outline



Rules Project Proposals

Rules of the Game

Short-term goal This is the goal that must be reached in order for
the project to be evaluated.

Long-term goal While the long term goal needs not be reached
within the project timeframe, the documentation and
planning should reflect the goal, making it so that
future development do not need to reengineer
completely the application.

Technical details The required tools in terms of programming
languages, libraries, documentation and version
control tools. These are mandatory.



Rules Project Proposals

Android apps

KsirK Android port
Native app with Qt

Description

Ksirk is a Qt Risk clone. The goal of this project is to port the
game to the Android platform.



Rules Project Proposals

Android apps

kbreakout Android port
Native app with Qt

Goals and Techniques

Short-term goal Functional port of the Krisk game.

Long-term goal Network multiplayer support.

Educational value Learn a major GUI framework (Qt), learn the
Android native app development process.

Technical details C++ language, doxygen documentation, version
control with google code or github; Android SDK.



Rules Project Proposals

C refactoring/reenginering

OpenTyrian Re-engineering

Description

OpenTyrian is a scrolling space combat game. It has been released
as Open Source and successfully reimplemented in C, but the
implementation suffers from old “spaghetti” coding style. A clean,
reader-friendly implementation is the goal of the project.



Rules Project Proposals

C refactoring/reenginering

OpenTyrian Re-engineering

Goals and Techniques

Short-term goal remove global variables as much as possible
employing meaningful names, use C exact types for
structure definition.

Long-term goal reengineering of the codebase, integration of
TCP/IP network game support.

Educational value put into practice the notions of practical
programming learnt in the course.

Technical details C language, Google Code with mercurial/Github
w/git.



Rules Project Proposals

P2012 Benchmark

P2012 Benchmark development
Image recognition algorithms

Description

STMicroelectronics Platform 2012 is a novel many-core accelerator
for high end embedded systems. We want to compare its
performance and programmability to those of GPUs and multi-core
CPUs by developing an implementation of the Canny algorithm.
The P2012 SDK, including simulator and emulator, will be used for
this work.



Rules Project Proposals

P2012 Benchmark

P2012 Benchmark development
Image recognition algorithms

Goals and Techniques

Short-term goal design and implement the algorithm using the
P2012 SDK.

Long-term goal allow for different optimizations for P2012, GPUs
and CPUs.

Educational value develop an application for an increasingly
common architectural model (programmable parallel
accelerators for high end embedded systems).

Technical details OpenCL API and programming language;
doxygen documentation, version control with
mercurial on POLIMI servers.



Rules Project Proposals

HW-accelerated DTLS

Hardware-accelerated DTLS
SPEAr C3 PolarSSL integration

Description

The STMicroelectronics SPEAr platform includes a C3 crypto
accelerator. The C3 crypto accelerator is an ASIC crypto
accelerator embedded in modern ARM Cortex platforms by STM
and already has a working interface in the form of linux device
files. The goal of the project is to implement the DTLS protocol
(TLS over UDP) within the PolarSSL library. A board endowed
with the C3 Accelerator and the properly configured Linux
distribution will be made available via SSH.



Rules Project Proposals

HW-accelerated DTLS

Hardware-accelerated DTLS
SPEAr C3 PolarSSL integration

Goals and Techniques

Short-term goal Support a DTLS session with one cipher suite.

Long-term goal Support the entire DTLS protocol.

Educational value work with standard technologies for embedded
encryption (PolarSSL) and develop for a state of the
art high-end embedded processor.

Technical details C language; doxygen documentation; version
control with mercurial on POLIMI server; PolarSSL.



Rules Project Proposals

Amiga Emulator GUI

Amiga Emulator GUI
Adding a Qt GUI to the UNIX Amiga Emulator

Description

The fs-uae is a command line emulator for the Amiga
system able to emulate different Amiga machines when
provided with firmware and disk images

fs-uae is currently missing a well structured GUI



Rules Project Proposals

Amiga Emulator GUI

Amiga Emulator GUI
Adding a Qt GUI to the UNIX Amiga Emulator

Goals and Techniques

Short-term goal Obtain a working GUI that can control UAE with
the same capabilities of the command line and a
basic save-restore settings functionality.

Long-term goal Provide the gui with firmware and disk image
management features, package for major distributions

Educational value Learn a major GUI framework (Qt) and C++
fundamentals.

Technical details C++ language, doxygen documentation, version
control on Google Code/Github



Rules Project Proposals

ARM dynamic re-scheduling

Dynamic Code Re-Scheduling
Re-Scheduling ARM machine code

Description

To hide the actual operation of a function, it is useful to
periodically (randomly) re-order the instructions, while preserving
the semantics. A code scheduler should be implemented that is
able to generate equivalent but re-scheduled functions. The
scheduler must be integrated in an existing suite of side-channel
countermeasures, and needs to be extremely fast.



Rules Project Proposals

ARM dynamic re-scheduling

Dynamic Code Re-Scheduling
Re-Scheduling ARM machine code

Goals and Techniques

Short-term goal Develop the code scheduler.

Long-term goal Support rescheduling of instructions that need
recomputing of relative addresses.

Educational value Understanding of the ARM ISA; understand the
nature of dependencies among machine instructions.

Technical details C and ARM assembly language; doxygen
documentation; versioni control with Mercurial.



Rules Project Proposals

Embedded Systems

SPEAr Barebone mode
Running programs on SPEAr without OS

Description

Embedded systems often execute a single program, without an
underlying operating system. The goal of the project is to build a
framework to easily load and execute code on an STM SPEAr
board (provided) without using an operating system.



Rules Project Proposals

Embedded Systems

SPEAr Barebone mode
Running programs on SPEAr without OS

Goals and Techniques

Short-term goal Be able to run C source code controlling General
Purpose Input Output (GPIO) pins and handling the
communication with a host PC via serial port.

Long-term goal Provide a flexible C library to run programs on the
bare metal on the board

Educational value Learn to work in an embedded scenario, with a
real world ARM processor implementation.

Technical details C language; doxygen documentation; any
versioning system (git, mercurial).



Rules Project Proposals

Embedded Systems

Data recovery
Data carving software

Description

Common data carving for data retrieval purposes is performed by
tools which recognize beginning and end sequences and save
whatever there is in between as the “recovered file”. binwalk is
one of the most common tools to perform this task on a single file,
but the matching is made in a trivial way rendering the program
slow in analyzing files



Rules Project Proposals

Embedded Systems

Data recovery
binwalk extension

Goals and Techniques

Short-term goal Implement the matching strategy storing the rules
in a tree, parallelize analysis with pthreads

Long-term goal obtain a tool able to match also common infixes
of a file

Educational value learn efficient programming in C, learn to
understand someone else’s code

Technical details C language, doxygen documentation,
GitHub/Google Code versioning (the project is
hosted on Google Code)


