
ACSE: Advanced Compiler System
for Education
Software Compilers: Evaluation

ACSE: Advanced Compiler System for Education – p. 1



Software Compiler Written
Exam

• 2 points over a total of 10
• February 1st
• Time: 1h 15m
• Three exercises on the topics covered by

lectures
• See the exercises for last year’s exam on the

web site

ACSE: Advanced Compiler System for Education – p. 2



Software Compiler Projects:
Overview

• 8 points over a total of 10
• Project Rules
• Types of Assignments
• The projects, at last!

ACSE: Advanced Compiler System for Education – p. 3



Software Compiler Projects:
Rules

• Selection: FIFO!
• Go to my homepage (http://home.dei.polimi.it/agosta)
• Go to the projects page (link at the end of the course page)
• Register to the system (login link on the left column)
• Edit the page and reserve your choice
• Do not overwrite non-blank entries!!!

• How many people per group?
• Preferred: 2
• Also possible: 1
• Not possible: 3+

ACSE: Advanced Compiler System for Education – p. 4



Software Compiler Projects:
Rules

• What to send in? (standard projects)
• Start from the standard ACSE distribution, plus all the patches
• Add your own code, documentation and tests in the

appropriate dirs
• Use diff -Naur ACSE ACSE-myproject to build a patch
• Zip/tar it and send to us

• Documentation:
• Comment the code using the same style as the rest of the

machine
• Add a new folder in the documentation with a description of

your project work in .tex
• Remember to use/update makefiles
• Add significant tests to help verification of your project work

ACSE: Advanced Compiler System for Education – p. 5



Software Compiler Projects:
Rules

• Evaluation
• Early submissions (arriving before January 24th) get a +1

bonus
• Submissions within February 1st are evaluated normally

(maximum mark: 7)
• Marks for late submissions drop by 1 per week, up to 4
• Late submissions after February 14th will not get more than 4

regardless of quality

ACSE: Advanced Compiler System for Education – p. 6



Types of Assignments
• Standard Projects

• Based on ACSE
• Conventional (improve the compiler seen in

lab)
• Special Projects

• Based on other compilers
• More advanced (work on different

compilers)
• You get a +1 mark bonus for a special

project

ACSE: Advanced Compiler System for Education – p. 7



Project 1: Type system exten-
sion

• Goal: add support for all C-style numeric
types (float, double, long long)

• Syntax: float type, 1.0 FP constants, 1L
long constants

• This project requires the modification of all
the three components to implement FP
arithmetics and 64-bit values

ACSE: Advanced Compiler System for Education – p. 8



Project 2: Scope management
• Goal: introduce a more complete

management of scopes and variables
• Syntax: variables may now be declared at the

beginning of any code block ({} pair)
• Semantics: variables declared within one

block are only visible there
• This project requires the modification of all

the three components of the ACSE system,
and a re-organization of the Symbol Table

ACSE: Advanced Compiler System for Education – p. 9



Project 3: Code Generation
• Goal: rewrite the code generation part to produce assembly for a

different platform

• This project is available in several flavors – the assembly may be
chosen among the following:
• Java bytecode (project 3)
• You can propose a different platform (not previously done)

• In addition to the back-end part, you must also implement the
switch and break/continue constructs in ACSE

ACSE: Advanced Compiler System for Education – p. 10



Project 4: Intermediate Repre-
sentation

• Goal: introduce an intermediate language
between front-end and back-end

• Design the intermediate representation as a
tree or graph of instructions

• Each instruction will be represented by a data
structure

• A visit on the graph or tree will then produce
the assembly code

• An API for modifying the intermediate
representation must be provided

ACSE: Advanced Compiler System for Education – p. 11



Project 5-9: Multi-target back-
end

• Goal: restructure the back end to support
multiple back ends (using those already
developed in past projects)

• The back-end used should be selectable via
compilation switches or command line options

• Note: past projects may have limits! You’ll
need to overcome them in some cases

• The project is available in several flavours:
• External back-ends: LLVM and GNU

Lightning
• LanCE with functions: Arm and x86/nasm

(3 students)
RISCs: MIPS and Arm

ACSE: Advanced Compiler System for Education – p. 12



Project 10-11: Struct and Union
• Goal: extend the front-end with a Struct and

Union constructs
• Syntax: as C struct and union
• In addition to the front-end part, you must

also re-write the ACSE back-end to a subset
of MACE:
• Without binary operations (ADDI, SUBI,

etc; project 19)
• Without the Scc operation (project 20)

ACSE: Advanced Compiler System for Education – p. 13



Project 12: Front-End exten-
sions

• Goal: extend the front-end with the following constructs
• Typedef (with type checking and casting)
• Goto/Label

• In addition to the front-end part, you must also re-write the ACSE
back-end to a subset of MACE:
• With accumulator-based arithmetic operations (i.e., dest and

src1 must be the same for ADD, SUB, ADDI, etc.;

ACSE: Advanced Compiler System for Education – p. 14



Project 13: Pointers
• Goal: extend the front-end with the following

constructs
• Pointers
• Goto/Label

• In addition to the front-end part, you must
also target x86

ACSE: Advanced Compiler System for Education – p. 15



Project 14: Vector Operations
• Support vector operations on fixed length

vectors in ACSE
• The back-end, based on the existing

x86/NASM back-end, must translate vector
operations using SSE extensions

ACSE: Advanced Compiler System for Education – p. 16



Project 15: Dynamic Memory
Allocation

• Support dynamic memory allocation
• The back-end must be based on the existing

x86/NASM back-end, with function extensions

ACSE: Advanced Compiler System for Education – p. 17



Project 17-18: OpenMP Com-
piler (Special)

• Goal: extend a C source-to-source compiler
to support OpenMP constructs
• Limited to parallel for constructs
• Translation options: to pthreads (project

17) or to CUDA (project 18)

ACSE: Advanced Compiler System for Education – p. 18



Project 19-20: CUDA Compiler
(Special)

• Goal: extend a C source-to-source compiler
to support CUDA constructs
• Translation options: to pthreads (project

19) or to OpenMP (project 20)

ACSE: Advanced Compiler System for Education – p. 19



Project 21-22: OpenCL Com-
piler (Special)

• Goal: extend a C source-to-source compiler
to support OpenCL constructs
• Limited to parallel for constructs
• Translation options: to pthreads (project

21) or to OpenMP (project 22)

ACSE: Advanced Compiler System for Education – p. 20



Project 23-24: Cryptolang (Spe-
cial)

• Cryptolang is a Python-based domain
specific language for cryptographic
applications development

• Goal: produce a translator from Cryptolang to
either VHDL (project 29) or C (project 30)

ACSE: Advanced Compiler System for Education – p. 21



Project 25: ACSE 2 Front-End
(Special)

• ACSE 2 is the ongoing development of an
improved version of ACSE

• Goal: complete the frontend support for the
new version of the LanCE language

ACSE: Advanced Compiler System for Education – p. 22


	Software Compiler Written Exam
	Software Compiler Projects: Overview
	Software Compiler Projects: Rules
	Software Compiler Projects: Rules
	Software Compiler Projects: Rules
	Types of Assignments
	Project 1: Type system extension
	Project 2: Scope management
	Project 3: Code Generation
	Project 4: Intermediate Representation
	Project 5-9: Multi-target back-end
	Project 10-11: Struct and Union
	Project 12: Front-End extensions
	Project 13: Pointers
	Project 14: Vector Operations
	Project 15: Dynamic Memory Allocation
	Project 17-18: OpenMP Compiler (Special)
	Project 19-20: CUDA Compiler (Special)
	Project 21-22: OpenCL Compiler (Special)
	Project 23-24: Cryptolang (Special)
	Project 25: ACSE 2 Front-End (Special)

