\ 4

ACSE.: Advanced Compiler System
for Education

Software Compilers: Evaluation

Software Compiler WrM}
Exam

2 points over a total of 10
February 1st
Time: 1h 15m

Three exercises on the topics covered by
lectures

See the exercises for last year's exam on the
web site

A

Software Compiler
Overview

8 points over a total of 10
* Project Rules

» Types of Assignments

» The projects, at last!

A

Software Compiler Prg ¥
Rules

Selection: FIFQO!
Go to my homepage (http://nhome.dei.polimi.it/agosta)
Go to the projects page (link at the end of the course page)
Register to the system (login link on the left column)
Edit the page and reserve your choice
Do not overwrite non-blank entries!!!
How many people per group?
Preferred: 2
Also possible: 1
Not possible: 3+

A

Software Compiler Prg ¥
Rules

What to send in? (standard projects)
Start from the standard ACSE distribution, plus all the patches

Add your own code, documentation and tests in the
appropriate dirs

Usedi ff -Naur ACSE ACSE- nypr oj ect to build a patch
Zip/tar it and send to us

Documentation:

Comment the code using the same style as the rest of the
machine

Add a new folder in the documentation with a description of
your project work in .tex

Remember to use/update makefiles
A

nificant tests to help verification. of your project work

Software Compiler Prg ¥
Rules

Evaluation

Early submissions (arriving before January 24th) get a +1
bonus

Submissions within February 1st are evaluated normally
(maximum mark: 7)

Marks for late submissions drop by 1 per week, up to 4

Late submissions after February 14th will not get more than 4
regardless of quality

A

\ 4

Types of Assignments

Standard Projects
Based on ACSE
Conventional (improve the compiler seen in
lab)

Special Projects
Based on other compilers
More advanced (work on different
compilers)
You get a +1 mark bonus for a special
project

A

Project 1. Type system eM
SIon
Goal:. add support for all C-style numeric
types (float, double, long long)

Syntax: f | oat type, 1. O FP constants, 1L
long constants

This project requires the modification of all
the three components to implement FP
arithmetics and 64-bit values

A

Project 2: Scope managemen'

Goal: introduce a more complete
management of scopes and variables

Syntax: variables may now be declared at the
beginning of any code block ({} palir)

Semantics: variables declared within one
block are only visible there

This project requires the modification of all
the three components of the ACSE system,
and a re-organization of the Symbol Table

A

Project 3: Code Generation l'

Goal: rewrite the code generation part to produce assembly for a
different platform

This project is available in several flavors — the assembly may be
chosen among the following:

Java bytecode (project 3)

You can propose a different platform (not previously done)

In addition to the back-end part, you must also implement the
switch and break/continue constructs in ACSE

A

Project 4: Intermediate R#
sentation

Goal: introduce an intermediate language
between front-end and back-end

Design the intermediate representation as a
tree or graph of instructions

Each instruction will be represented by a data
structure

A visit on the graph or tree will then produce
the assembly code

An API for modifying the intermediate

repreientation must be provided

Project 5-9: Multi-target b’-
end

Goal: restructure the back end to support
multiple back ends (using those already
developed In past projects)

The back-end used should be selectable via
compilation switches or command line options

Note: past projects may have limits! You'll
need to overcome them Iin some cases

The project is available in several flavours:

External back-ends: LLVM and GNU
Lightning

m with functions:; Arm.and.x86/nasm
ents)

Project 10-11: Struct and U nl!n

Goal: extend the front-end with a Struct and
Union constructs

Syntax: as C struct and union

In addition to the front-end part, you must
also re-write the ACSE back-end to a subset
of MACE:

Without binary operations (ADDI, SUBI,
etc; project 19)

Without the Scc operation (project 20)

A

Project 12: Front-End ex!—
SIONsS
Goal: extend the front-end with the following constructs
Typedef (with type checking and casting)
Goto/Label
In addition to the front-end part, you must also re-write the ACSE
back-end to a subset of MACE:

With accumulator-based arithmetic operations (i.e., dest and
srcl must be the same for ADD, SUB, ADDI, etc.;

A

Project 13: Pointers I'

Goal: extend the front-end with the following
constructs

Pointers
Goto/Label

In addition to the front-end part, you must
also target x86

A

Project 14: Vector Operati on!

Support vector operations on fixed length
vectors in ACSE

The back-end, based on the existing
X86/NASM back-end, must translate vector
operations using SSE extensions

A

Project 15: Dynamic Mem'y
Allocation

Support dynamic memory allocation

The back-end must be based on the existing
X86/NASM back-end, with function extensions

A

Project 17-18: OpenMP C'—
piler (Special)

Goal: extend a C source-to-source compiler
to support OpenMP constructs

Limited to parallel for constructs

Translation options: to pthreads (project
17) or to CUDA (project 18)

A

Project 19-20: CUDA ComM
(Special)

Goal: extend a C source-to-source compiler
to support CUDA constructs

Translation options: to pthreads (project
19) or to OpenMP (project 20)

A

Project 21-22: OpenCL C'—
piler (Special)

Goal: extend a C source-to-source compiler
to support OpenCL constructs

Limited to parallel for constructs

Translation options: to pthreads (project
21) or to OpenMP (project 22)

A

Project 23-24: Cryptolang (!
cial)
Cryptolang is a Python-based domain
specific language for cryptographic
applications development

Goal: produce a translator from Cryptolang to
either VHDL (project 29) or C (project 30)

A

Project 25: ACSE 2 Frontm
(Special)

ACSE 2 is the ongoing development of an
iImproved version of ACSE

Goal: complete the frontend support for the
new version of the LanCE language

A

	Software Compiler Written Exam
	Software Compiler Projects: Overview
	Software Compiler Projects: Rules
	Software Compiler Projects: Rules
	Software Compiler Projects: Rules
	Types of Assignments
	Project 1: Type system extension
	Project 2: Scope management
	Project 3: Code Generation
	Project 4: Intermediate Representation
	Project 5-9: Multi-target back-end
	Project 10-11: Struct and Union
	Project 12: Front-End extensions
	Project 13: Pointers
	Project 14: Vector Operations
	Project 15: Dynamic Memory Allocation
	Project 17-18: OpenMP Compiler (Special)
	Project 19-20: CUDA Compiler (Special)
	Project 21-22: OpenCL Compiler (Special)
	Project 23-24: Cryptolang (Special)
	Project 25: ACSE 2 Front-End (Special)

