An Optimized Reduction Design to Minimize Atomic
Operations in Shared Memory M ultiprocessors

Abstract

Reduction operations play a key role in modern massivelp dat
parallel computation. However, current implementationshared
memory programming APIs such as OpenMP are often cause o
computation bottlenecks due to the high number of atomicaspe
tions involved. We propose a reduction design that takeargedge

of the coupling with a barrier synchronization to optimihe e£xe-
cution of the reduction. Experimental results show how tiaiper

of atomic operations involved is dramatically reduced, ahhtan
lead to significant improvement in scaling properties ogdarum-
bers of processing elements. We report a speedup of 59.64k&on

312.swimm SPEC OMP2001 benchmark and a speedup of 24.89%

on thestreamclustebenchmark from the PARSEC suite over the
GCClibgompbaseline.

1. Introduction

The rise of multi-core architectures in recent years hasdetie
widespread need for parallel software. Given the limitedrione-
ments in clock rates, exploiting parallel execution is rezkit guar-
antee performance improvements.

Parallelism can be exploited at several levels of grarylari
from instruction level parallelism to data parallelism &ésk paral-
lelism. The OpenMP [1] Application Programming Interfaéd>()
aims at providing an easy-to-use way to program paralleliegp
tions at multiple levels of granularity, implemented on tdfthe C
and Fortran languages. Specifically, it targets data arndpasal-
lelism by providing directives to identify parallel regomf code
and parallel loop constructs.

OpenMP also offers seductionclause to provide some support
for recursive array computation, inspired by thegluce or fold
constructs of functional languages [6].

In functional languages such as Lisp or Haskedljuceis a
higher-order operator that takes as input a binary funcfioa list
[and an initial valuey, and is defined recursively as follows:

_Jow if |I| =0,
reduce(f,1,v) = { reduce(f,l[1], f(v,1[0])) if]l| >0
If the binary functionf is associative, it is possible to parallelize
the reduce operation, executing it in approximately: (|!|) steps,

where each step computes a set of intermediate resulfsby
applying f to pairs of values of;_.

[Copyright notice will appear here once "preprint’ opti@réemoved.]

OpenMP support foreducelike constructs is limited to asso-
ciative and commutative binary operators and, in the caseonf
tran, intrinsic procedures, which are also associativecantmuta-

ftive functions. Arbitrary functiong’ are not supported.

Reduce-inspired constructs are essential for the expressdi
data parallelism, as they provide the means to express thacex
tion of synthetic results from large amounts of data. Rewsnks
in the field of distributed computing [9] show that many dadagh-
lel computations can be easily expressed in terms of a relkece
construct paired with anaplike construct. A map construct es-
sentially allows the execution of a giverary function on all the
n-uples obtained by taking an element from each séquences of
equal length.

In OpenMP, the parallel loop construct provides the basia da
parallelism, replacing the functional map with a somewhatem
general procedural construct, but still replicating a ¢gbimap-
reduce structure.

The parallel loop implementsfark-join model, which requires
a single implicit synchronization. In the general case, r@lsi
barrier synchronization is needed for ensuring that athttens of a
parallel loop are completed at the join point before movimgther
parts of the program. This implicit synchronization cané&moved
with anowait clause, while explicit synchronizations can also be
used to handle data dependencies.

On the other hand, the reduction step, which always takes pla
at the end of a parallel loop, requires more synchronizafidris
synchronization overhead leads the reduction step to dassef
scalability, to the point where reduction overhead can bera
critical issue, as shown in [11] for tt84.2.swimm SPEC OMP2001
benchmark.

The goal of this paper is to introduce an optimized barrier
synchronization and reduction step, by allowing the inexliate
values of the reduction to be carried along by the interetire
communication required for the barrier synchronization.

The proposed solution is demonstrated by means of both
OpenMP and pthread-based implementations. The pthredd-imp
mentation is stand-alone and introduces a reduction agristr

For OpenMP, we repladibgomg barrier synchronizations in-
volved in a reduction with a tournament barrier [15], whistboth
more efficient and scalable, and mirrors the tree structitfeeqpar-
allel reduction. We then use the atomically-accessiblesftZfighe
tournament barrier to store partial reduction values, teasoving
the need for locks in communicating the partial values.

The rest of this paper is organized as follows. Section 2 in-
troduces the background on barrier synchronization analcteh.
Section 3 provides a detailed description of our solutidnijevSec-
tion 4 shows its worth through an experimental campaign dh bo
benchmark applications and synthetic micro-benchmarksllly,
Section 5 provides comparison with the state of the art incgdn

llibgompis the OpenMP runtime implementation provided by the GNU
GCC compiler [12].

2010/8/1

optimization and Section 6 draws some conclusions andigius|
future research directions.

2. Background

In this Section, we review the background in barrier synotza-
tion algorithms and parallel reduction implementatiorthvén eye
to the implementation of both features in OpenMP.

2.1 Barrier Synchronization

Barrier synchronization overheads account for a largditramf
the communication time in parallel/concurrent applicasio

Barriers can be used with both message passing and share

memory programming models. In this paper, we will descriae b
rier algorithms in terms of the shared memory programmindeho
since it is the one implemented in OpenMP.

The goal of an optimized barrier algorithm is in both cases to
minimize the communication involved during each barrieerap
tion. In the case of message passing, this is representée ipatk-
ets sent, while for shared memory the communication is nbthi
through the execution of atomic instructions, as their aten is
guaranteed to be correctly observed by threads other tleaorth
performing them.

The minimization of barrier synchronization overheads has
been addressed by a large number of studies [21] proposing ne
barrier algorithms. In general terms, we can identify ttoleess of
barrier algorithmscentralized disseminatiorandtree barrier.

The centralized barrier class includes the central couvaer
rier [10], used inlibgomp the butterfly barrier [4] belongs to the
dissemination class; the tournament barrier [15] is an @k@rof
a tree barrier. A full analysis of the state of the art is beltime
scope of this paper, but a good survey can be found in [21].

Distributing the barrier state among threads is a mandatory
feature in the message passing programming models — itatiow
distribute the communication traffic. However, it is alsgintant
in the shared memory programming model, as it allows to reduc
the number of invocations of the cache coherency protocols.

2.2 Reduction Implementations

A reduction operation computes a scalar value as a combimati
of values in a sequence. In a OpenMP parallel region, a rigguct
is almost always followed by a barrier operation. This aliaive
reduction value to be correctly seen by all threads aftesinggethe
barrier.

The reduction itself can be executed in several differentswa
In the most trivial scheme, the reduction is computed by the-m
ter thread between two barrier operations. The reducti@ois-
puted sequentially. The first barrier ensures that the m#stead
sees a consistent state of the memory — all other threadshaust
finished the previous phase — before starting aggregatihgsa
The second barrier blocks other threads until the reduésicom-
pleted. Such a simple scheme obviously sacrifices all oppirt
ties for parallelization, and involves two barrier synafimations,
but the reduction itself is computed without performing aegd-
modify-write atomic instruction.

In general, however, the OpenMP compiler parallelizes ¢ie r
duction. In this scenario, the reduction value is a variablared
among all threads. Each thread performs a partial reductien
private data, and then safely aggregate the partial remugtilue
to the global one. In addition to parallelization, this stieeallows
the elimination of the first barrier. On the other hand, thabgl ag-
gregation can be performed inside a critical section, ordeewted
through an atomic read-write-modify instruction — both diigh
are expensive.

If the hardware architecture supports fast barrier synibheo
tion, it is also possible to perform reductions in a logamitt num-

ber of steps, using a divide et impera approach with barreessp-

arate each step from the following. Since this implemeotate-

quireslogz(n) barrier synchronizations, whereis the size of the
sequence, it is only acceptable when there is hardware guijopo
fast barriers.

Figure 1 reports an example for each of the three implemen-
tations, using primitives from thibgomp runtime [12]. The first
example, Figure 1(a), shows a simple serialized implentienta
while the second, Figure 1(b) reports the code generated@® G
to implement a reduction associated witbngp for directive. The
loop boundariedw andup are set by the OpenMP runtime and

nsure that accesses to theput array are orthogonal between
hreads. Finally, Figure 1(c) performs a logarithmic retthrc Note
that the code is more complex than previous examples and beul
further optimized.

2.3 Atomic Operations

To allow threads to coordinate their execution, modern opiar-
cessors support atomic memory access operations. In s@as, ca
the atomicity is guaranteed by hardware properties for nmgmo
read and write operations. For example, on the Intel x86 Péiya
processors every load and store aligned to 8/16/32/64 Hitsgfi
into a cache line is atomic [18].

However, in most cases the atomic operations are more cemple
than simple reads or writes. The two most popular classewofie
operations are theead-modify-writeand thecompare-and-swap

Atomic read-modify-write instructions atomically read alwe
from memory, perform an arithmetic or logic operation, anitev
the result in the same memory address from which the operasd w
read. On modern microprocessors, the atomicity is impléetkon
top of the cache coherency mechanism [14].

Compare-and-swap instructions allow to atomically reaalae/
from the memory, and optionally replace it with the contefit o
an operand. Compare-and-swap operations are more poweful
any atomic read-modify-write instruction [16], but coste aom-
parable — in both cases, the time spent achieving atomgitiigé
dominant cost factor.

3. Combining Barrier and Reduction

To mitigate reductions overhead, we can combine the exacofi
each reduction and its associated barrier. This allows yospa-
chronization cost once, while performing two operationgduc-
tion and barrier.

To improve performance, we also aim at reducing the usage of
atomic read-modify-write instructions as much as possiblaus,
we choosdournament barrie{15] as a starting point for our re-
duction design, since it achieves synchronization withpaurform-
ing any atomic read-modify-write instruction.

3.1 Tournament Barrier

The tournament barrier employs a binary tree data structtvere
each of the threads that need to be synchronized is stgtiasl
sociated to an arbitrarily chosen leaf. Thus, for synctriogi n
threads, the algorithm uses a tree wiith— 1 nodes. The algorithm
operates iogz2n rounds.

The nodes of the barrier tree are partitioned into three sets
active passiveandroot nodes. The root set contains only the tree
root, while each pair of siblings nodes is composed by anaatid
a passive node. The active and passive nodes are arbithaden
within the sibling pair.

Figure 2 reports the basiournament_barrier algorithm.
The tournament_barrier procedure manages the entrance of
each thread into a leaf node of the barrier tree, then rehethe
walk_tree procedure to perform the recursive traversal of the tree.

2010/8/1

GOMP_barrier () ;
tid=omp_get_thread_num ();

if (tid==0)

{ private_red=0;
red=0; for(i=1lw; i<up;
for(i=0; i<SIZE; ++i) private_red+=

red+=datal[i];
}
GOMP_barrier ();
(a) Serialized

GOMP_barrier ();

atomic_add (&red,
private_red);

(b) Parallelized

GOMP_barrier () ;
tid=omp_get_thread_num () ;
sred[tid]=datal[tid];
for(i=1; i<SIZE; i*=2) {
if (tid%(2*%1)==0)
sred[tid]+=data[tid+i];
++1) GOMP_barrier ();
datal[il; }
if (tid==0)
red=sred [0];
GOMP_barrier () ;
(c) Hand-written

Figure 1. Comparison of reduction implementations. In the seridlizersion the reduction is performed by the master thread, an
constrained by two barrier operations. The parallelizediva distributes the computation, eliminating the needhef first barrier, but
paying the cost of an atomic read-modify-write atomic instion. Finally, the last fragment performs a logarithnaduction. This requires
[log2(n)] barrier synchronizations, and is only worth doing when thedtvare provides a fast implementation of this construct.

Procedure: tournament_barrier

Require: a thread identifietid

Require: atournament barrier treeee

Ensure: threadtid waits other before leaving the barrier
1: leaf « tid_to-leaf(tree,tid)

tsense < load_sense_from_tls()

walk_tree(leaf,tsense)

store_sense_to_tls(tsense)

2:
3:
4.

Procedure: walk_tree

Require: a tournament barrier tree nodede
Require: a senseense
1: if node is activethen

2. sibling <« get_sibling(node)
3: parent «— get_parent(node)
4: wait(sibling, sense)
5. walk_tree(parent, sense)
6: signal(sibling, sense)
7: elseif node is passivehen
8: sibling «— get_sibling(node)
9: signal(sibling, sense)

10: wait(sibling, sense)

11: end if

Figure 2. Tournament barrier algorithm. The entry point, proce-
duretournament_barrier, wraps thewalk_tree kernel, a recur-
sive procedure that visits the tournament barrier tree.

A thread entering a passive nodealk_tree, line 7) signals
the thread entering its active sibling that it has reachedotrrier
(lines 8-9), then waits for synchronization by spinning opra
vate flag (line 10). A thread entering an active node waitgter
thread associated to its passive siblinglk_tree, line 4), then it
moves to the parent node, thus entering a new round of théisync
nization algorithm (line 5). When it completes the synclization
algorithm, the thread in the active node notifies the synubation
to its passive sibling by setting the private flag (line 6).

By construction, the root node is reached by a single thizadl,
only when all threads have reached the barrier and are syjrmi
some passive node. When the root is reached, the exit pha#e is
ated, with notification of the barrier completion being pagpted.

Before leaving the barrier, each thread reverses its grsanse
flag, to reuse the same barrier for the next synchronization.

- nyg — — Ng
to t1 to t3

Figure 3. Execution of the tournament barrier algorithm. Each
thread enters into the barrier via a statically assignetl [Eae
dashed path is followed by threads entering in an active ribioey
climb the tree until a passive node or the root node is reached

Example 1.Consider the four threads and the associated barrier
tree shown in Figure 3. The barrier tree is a complete binamg, t
with four leavesyiz to ng. Odd numbered nodes aaetive while
even numbered ones grassiveexcept for the root nodey. At the
beginning each thread is assigned to a leaf node. Thrga®lt,
enter into active nodes and start spinning until they anesdigd by
their siblings. Threads; and¢s enter passive nodes, signal their
siblings, and start spinning until they are notified durihg €xit
phase. Once, andt. have been notified by, andts, they move
toni andnz respectively, starting a new synchronization round. In
this roundt, is into an active node, while; is in a passive node.
Thust, progresses to the root nods, while to waits spinning.
Oncety reaches the root node, it starts the barrier exit phase.
First ¢ty returns ton; and signals ta to leave the barrier, then
it moves tons, signalst; that synchronization has been performed
and leaves the barriefs, in turn, notifiests. Once notified¢; and
t3 leave the barrier.

The standard tournament barrier allows avoiding atomid-rea
modify-write instructions by exploiting point-to-poingischroniza-
tion — each node contains a flag variable, which is writtery dmyl
its sibling. Thus, each flag variable is only written by a &rtfread
and hence no conflicts can occur.

However, such feature comes at a cost — the tournamentibarrie
consumes more memory than other barrier algorithms. Merov
the size and alignment of the flag must be carefully chosendiola

2010/8/1

auxiliary

] 01101...11 \

container container

Kk
3

i k—
payload path flag

(b) Extended

S |

payload flag

(a) Base

Figure 4. Layout of the container type. In the base version only
one bit is needed to encode the barrier state, all other casdzkto
pack partial reduction values. The extended layout usesrare

bit to find whether the reduction partial value is packed itie
container payload or stored in the auxiliary variable.

false-sharing — indeed, if two flag variables share the seaanbec
line, every update to one of the two triggers the executiothef
cache-coherency algorithm, thus degrading performanice flag
must thus have a size equal to the cache line, even thouglyit on
carries one bit of information — all other bits are just paddiE.g.,

on a machine with a 64-byte (512-bits) wide cache line, ez fl
includes 511 bits of unused padding.

3.2 Basic Reduction Design

The key idea of our design is to exploit the free space aveailimb
the tournament barrier flag variable to propagate the paesalts
of the reduction operation, computing them within the nodes

To this end, flag variables are stored into the widest type tha
allows atomic read/write access without locking — we will tais
type thecontainer typen the rest of the paper. They are also aligned
to the cache line size, to avoid false-sharing.

The container type is split into two sections, shown in Fig-
ure 4(a):flag bit stores the state of the barrier operation (1 bit);
payloadstores the state of the reduction operation-(bits, where
n is the size of the container type).

In the case of a 64-bit machine with a 64-byte wide cache line,
the container type is a 64-bit integer, aligned to 64-bytes.

As depicted in Figure 4(a), the first bit is the flag bit, whitet
remaining bits of the container type represent the payload.

All the bits needed to align the container to the cache line
are wasted, since we cannot access them atomically witrsdug u
locks and thus adding an overhead that would prevent theitidgo
from achieving a speedup with respect to existing designs.

A thread entering a passive node stores into its activengibli
both the flag bit and the payload containing its own partiduce
tion result. Then, it waits to be notified by its active siblioy spin-
ning on its own flag variable. At each spin, the value of the g
is extracted from the container and checked.

A thread entering an active node first spins over its flag bgia
waiting for the thread associated with the passive sibliodento
reach the barrier. At each spin, the container flag variablead
and the flag bit is extracted and checked. If the flag bit isthet,
payload is also extracted and aggregated with the privatiapa
result of the thread. The thread then enters the parent staténg
a new round of the algorithm.

When a thread returns to an active node after visiting itemar
the same operations are performed as in the exit phase oasfie b
tournament barrier algorithm. The thread notifies its passibling
that synchronization has been achieved by setting the ftagtbi
its flag variable.

_— —F Ng
7‘{;01§ T’t11§ %szl %Ttgl
to t1 to t3

Figure 5. An example of reduction. There are four threads, each
proposingl as the value to be aggregated. The reduction operator is
sum. Ther;, variable refers to the partial reduction seen by thread
t;, whiler,, is the value of the partial reduction inside nodeThe
reduction is computed along the dashed path. Partial riechscare
computed while moving from a node to its parent. Passive iode
sends their partial reduction values to associated actides

In our design, reaching the root node has a double meaning:
not only all threads have reached the barrier, but the remuét
also computed, and its value is stored in the current threadte
memory space. To make this value readable to all threads, it i
necessary to store it in a global-accessible variable agl fibrce
a memory fence operation. At this point the reduction is detepl
and the tournament barrier algorithm can proceed, notftfineads
that synchronization has been achieved.

Example 2.We want to compute the sum of a sequence of un-
signed integer values. Assume that the sequence to be teese
been split into four subsequences, and partial aggreghtes/aave
been computed by each of the four threads, as shown in Figure 5
Each thread; (i € [0 : 3]) enters the barrier carrying a partial
aggregate valug;. The algorithm performs the same steps as in
the standard tournament barrier implementation show inreig.

In addition, at each step threads in passive nodes packpeial
aggregate value together with the flag value into theirsiptiode.
Therefore in the first step, andts store their partial valueg;
andps into nodesns andns. Then,to andte before moving to the
second step extract from their respective containers tylepaand
compute new partial values by aggregating respectivglyp: and
p2 + ps. In the second stefp packs its computed partial value into
n1, where it is extracted by, and combined to obtain the global
reduction valuey + p1 + p2 + ps. This value is published b,
when it reaches the root nodg. The exit phase is unmodified with
respect to Example 1.

3.3 Fast Path Optimization

The basic reduction design represenfast execution pathwhich
is only semantically correct under the condition that treuction
data-type fits the size of the container payload. To handie¢h
maining cases, a fall-baatow pathwill be introduced in Section .

The efficiency of the fast path strictly depends on the ahbdft
the base tournament barrier algorithm to parallelize tikeicgon
operation as well as to minimize the number of atomic openati
The reduction parallelism is achieved by exploiting thedniehical
structure of the barrier tree, while independence derika® im-
iting the entities performing the partial reductions to fwamely
reader and writer. Thus ahway tournament barrief13] would
not be as effective as a base algorithm for our purpose.

2010/8/1

Procedure: path-management

Require: a partial reduction valuéata
Require: a passive tournament barrier nadede
Ensure: reduction information is communicated to the active sib-
ling of node
1: sibling «— get_sibling(node)
if fits(data,payload_size) then
sibling.container «— pack(data, FAST_PATH, flag)

else

siblings.auziliary «— data

mfence()

sibling.container «— pack(0, SLOW _PATH, flag)
end if

NSO A

Figure6. Path management algorithm: when the partially reduced
value fits the payload, the fast path is taken; otherwisewva phth
involving a memory fence is triggered.

3.5 Compact Data Representation

Taking the fall-back slow path is not always necessary when t
data size is too wide by just 2 bits. As an example, consider a
reduction over 32-bit unsigned integers on a 32-bit mact$irece
we use 1 bitto represent the flag and 1 for the path field, theady
is not wide enough to store a 32-bit unsigned integer. Thut)e
many cases where the values involved in the reduction neceed
230 _ 1, we could still use the fast path — the same might not be
true in the case of signed integers, though.

The packing function used to store the partial reductionesl
into the payload is therefore parametrized with respedtéae¢duc-
tion data type and values. When working with the widest umesily
integer type that allows atomic read/write access, theipgdkinc-
tion checks whether the value can actually fit into the paylpe.,
the two most significant bits are not set).

In these cases, the algorithm is not forced to take the slalv pa
over all nodes — path selection strictly depends on the bealize
of the reduction in each active thread. If a partial reductialue
follows a slow path, this does not force a slow path for theepth
threads. In many cases, such as when a reduction is used to sum
partial counters, it is more likely to overflow payload bosrahly

The fast path requires only one memory fence. The thread thatin the last rounds of the algorithm, which also involve orgyvf

reaches the root node performs this memory fence to makenthle fi
result of the reduction visible to all threads.

While the ability to take the fast path is dependent on theced
tion data type, it is independent from the operator used goeagte
values. As long as partial reduction values fit into the cioltgpay-
load, atomic read-modify-write operations and memory ésncan
be avoided.

3.4 Slow Path Management

The slow pathis designed as an extension of the basic reduction
algorithm to handle the case when the reduction data-type dot
fit the container payload.

To this end, the container layout has been further modified,

threads, thus using a fast path in most nodes of the bareier tr

To exploit this path optimization in the very common case
where reductions are performed over word-size floatingtp@ih
ues, we need to recover two bits from the floating point repre-
sentation, without losing precision. IEEE double precidioating
point numbers [17}p are represented over 64 bi{$pes - . . fpo),
with the following interpretationsign = fpes holds the sign,
exp = (fpez...fps2) represent the biased exponent, and all
other bits hold thenantissa (except the first digit, which is im-
plicitly set at 1). Thus fp represent the floating point number
(1)1 x 267P=1023 (1.0 + mantissa).

To preserve precision, the algorithm cannot simply dist¢hed
least significant bits of the mantissa. We therefore opédrathe
same way as for the integers, assuming implicit values far tw

as shown in Figure 4(b), to reserve space for a 1 bit field — the bits. These bits, and the relative assumed values, mustdzech

pathfield. Consequently, the payload field is shrunk by 1 bit. An
auxiliary variable is added to the node state to hold theiglart
reduction value.

to maximize the execution frequency of the fast path.
The distribution of mantissa bits is hard to predict, and imgk
the sign implicit would limit the fast path to just positiveregative

Figure 6 shows the pseudo-code of the path management algo-values. Thus, we have to choose two bits from the exponemteSi

rithm. When the thread in the passive node needs to proptuate
reduction value to the thread associated to the activengibthe
management algorithm is invoked. If the partial reductiopsinot
fit into the payload (line 2), it is stored into the auxiliargriable
(line 5) associated with the active sibling of the currerdeandThen

a memory fence is issued (line 6). Finally thieag andpath fields
of the container are set.

Correspondingly, active nodes detect where to read thecredu
tion partial value by reading the path bit of their contairiéthe
path bit is set, the slow path has been taken, and the redyzdie
tial value can be found in the auxiliary variable associatét the
active node. Otherwise, the fast path has been executededhe-
tion partial value is packed into the payload (line 3).

the exponent is biased, the first two bits of the exponenitjoert
the space of floating point numbers in four equally sized gabss.
The 102 subspace contains exponents ranging fioim 512, mak-
ing it a good candidate for the assumed value. The subspace
represents very large numbers (in modulo), that are exgéatap-
pear late if at all in the reduction, whil@. represents very small
values, which would often be overshadowed by larger valady e
in the partial computations. Finally, tlid, subspace contains ex-
ponents betweer-511 and0, which makes it an excellent candi-
date, since it represents most of the rafge—2) (excluding the
values with a modulo close to zero), which is suitable for ynan
computations.

In the end, the choice betwe®i, and10, mostly depends on

Note that the memory fence is necessary to guarantee that thethe application domain. For the experiments reported mphaper,

partial reduction value is stored into the auxiliary vakéabefore
the flag and path bits are set, but induces an increasedyatunch
fence instructions are not issued on reductions perforrsajuhe
fast path, since in this case the partial reduction valudgtamflags
are written atomically.

Since modern processors are usually 64-bit based, thegshylo
is large enough to hold partial reduction values of mostveati
scalar data-types. Therefore the slow path is rarely takethe
next Section, we show how to deal with larger data types ahd st
benefit from the fast path.

we use thé)1, setup.

3.6 Nowait Reductions

Sometimes, it is necessary to aggregate different vasatila syn-
chronization point, and there are no data dependecies atheng
different reduction operations. In the case of multiplessnutive
reductions, we could still use a combined reduction/baopera-
tion for each reduction operation. However, this schemerees
some useless synchronizations, as once a thread has reagasd
sive node and has sent its reduction partial value to iteastbling,

2010/8/1

itis no longer necessary to wait at the barrier, as synchaion is
not actually needed except in the last reduction. We cadl kimd
of reductionsowait reductions

Nowait reductions are easily expressed within OpenMP pro-
grams. Work-sharing constructs, lisep for, can be tagged with
thenowait clause to avoid a barrier operation before leaving the
construct. If areduction clause is also present, our combined bar-
rier algorithm can be executed in nowait mode to computeehe r
duction value, issuing fewer atomic instructions than déad im-
plementation.

The base algorithm has been modified to support nowait reduc-
tions. A thread; reaching a passive node sends the reduction par-
tial value to its siblingt;, and starts waiting for a synchronization
achieved signal. Once notified, thregdoerforms the local aggre-
gation pass, and then releases thrgdzbforemoving to the parent
node. This allows; to leave the barrier earlier with respect to the
base algorithm, and the exit phase is not performed at all.

This scheme keeps into the barrier only those threads tkat ar
actually working to compute partial values of the reductiahile

all other can proceed to the next program statement. When the

following statement is also a combined barrier/reductiperation,
reductions are pipelined.

When operating in nowait mode, the thread reaching the tree
root does not issue any memory fence, since synchronizaion
not needed, and so publishing the reduction global valueois n
mandatory. Consequently, if global synchronization isdege the
last barrier operation cannot be performed in howait mode.

4. Experimental evaluation

Even though reduction is a common operation in many realdvorl
applications, there are few benchmarks designed to megs pes-
formance. Even suites specifically designed to benchmaeap
implementations, such as SPEC and NAS include only a few pro-
grams that include reductions, and even fewer where rezfurgp-
resents a large share of the computation time. Thus, wetedlec
from each suite those benchmarks that actually containgémoes
ductions to make it worth optimizing them. To supplemenséhe
benchmarks, we also provide some micro-benchmarks to meeasu
specific properties.

4.1 Benchmarks

We select a set of benchmarks from the most popular suites tar
geting shared memory parallel applications: SPEC OMP2aQ1 [
NAS [19], and PARSEC [3]. Furlinger et al. [11] show the bot-
tlenecks for the SPEC OMP2001 benchmarks. According ta thei
analysis312.swimm and310.wupwisem are the only benchmark

in the suite where reductions have a significant impact, ghou
310.wupwisem uses complex data types, and thus is not optimis-
able in our framework. PARSEC and NAS also provide a single
interesting benchmark eacdétreamclusteandcg.

In addition to evaluation on benchmark applications, sgtith
micro-benchmarks are useful to analyze the performanceepro
ties of the proposed reduction design. The only well knoworei
benchmark suite for OpenMP constructs is EPCC [5]. The EPCC
syncbenctbenchmark is designed to stress reduction computations.
Its kernel is eomp parallel region. However, the GCC OpenMP
implementation introduces implicit barriers at both reg#art and
end. Since the region body in the benchmark does not perfoym a
relevant computation, GCC-induced synchronizations dataithe
benchmark runtime, making it all but impossible to use itifer
designated purpose. Moreoveyncbenchdoes not help in under-
standing the behavior of the reduction design. Therefoeeprmo-
vide in Section 4.4 four synthetic micro-benchmarks.

of reductions and the data types involved. The set coverthall
interesting data types: integers and floating point numberghe
latter case including both single and double precision.

4.2 GCC Optimization

All benchmarks excepstreamclusterare parallelized exploiting
OpenMP directives. Thus, we have introduced in the GCC OfgenM
compiler support for our combined barrier and reductionlénp
mentation. When a reduction clause that can be optimizexiisd,

a GCC optimization pass identifies the barrier operatioes@ed
after the reduction, and replaces both with the invocatibous
combined reduction and barrier. To this end, we have alse aug
mented the GCC OpenMP runtimidggomp with our barrier im-
plementation. To measure the efficiency of the combinedidrarr
and reduction (and not the efficiency of the barrier alone) stil
rely on the default barrier implementation (a central ceurtar-
rier) in all cases except those where the combined barrigren
duction is used.

4.3 Experimental Setup

The experimental campaign has been conducted on a AMD NUMA
machine with four nodes, each a quad core Opteron 8378 proces
sor. Each core has a two-level private cache hierarchy. theces
composed by a 64KBytes data cache and by a 64KBytes ingtnucti
cache. L2 cache is an unified 512KBytes cache. All cores wihi
node share an unified 6144KBytes L3 cache. Inter-node coriamun
cation is supported by a fully-connected network.

All benchmarks are compiled with the GCC 4.6 compiler in
two flavors:baseand peak Base compilation is the reference ex-
ecution obtained using an unmodified GCC compiler and rustim
while peak compilation applies optimization to use our corad
reduction-barrier.

For each flavor, we register both the execution times, summa-
rized in Figure 8 and the number of atomic operations peréokm
shown in Figure 9. All benchmarks are run with a number of
threads varying from 1 to 16 — the maximum available hardware
parallelism.

4.4 Micro-benchmarks

To stress our barrier implementation, we have developed fou
micro-benchmarks. The kernels are reported on Figure 7.

The fast micro-benchmark in Figure 7(a) stresses the exe-
cution of the fast path. Conversely tlsow micro-benchmark
(Figure 7(b)) always triggers the slow path. Thexed micro-
benchmark (Figure 7(c)) evaluates the case where execsttots
from the fast path and then triggers the slow path. Findlnulti
micro-benchmark (Figure 7(d)) targets the nowait reductiehav-
ior in the case of multiple reductions in the same loop.

In all cases, we compare our design with lislgompbaseline.
The results show that for the fast path and the multiple nowai
reductions the number of atomic operations is very low amdesc
well over a larger amount of threads. However, thalti micro-
benchmark shows that greater benefits are achieved wheritnowa
reductions are involved since in this case our design saamifly
reduces the amount of synchronization, thus obtaining aomaj
performance improvement over thiegompbaseline.

On the other hand, trdowandmixedmicro-benchmarks show
that our design does not significantly degrade performarea e
when the slow path is triggered.

45 312.swim_m
This benchmark numerically solves a shallow water modgllin

Table 1 shows the resulting benchmark set, characterized by problem relevant to weather prediction [2]. It repeatedigarites a

the dynamic count of reduction operations, as well as byyhe t

computationally intensive loop body containing a parallpenMP

2010/8/1

Benchmark Suite Field Language Reductions Operator Data Type Data Size
(bits)
312.swimm SPEC OMP2001 Weather prediction Fortran 2400 + floating point 64
cg (class C) NPB Fluid dynamics Fortran 3900 + floating point 64
streamcluster PARSEC Online clustering C 4235 + unsigned integer 32
fast Micro-benchmark C 50000 & unsigned integer 64
slow Micro-benchmark C 50000 & unsigned integer 64
mixed Micro-benchmark C 50000 + unsigned integer 64
multi Micro-benchmark C 50000 & unsigned integer 64

Table 1. Benchmark characterization: dynamic count of reductisneported, together with the operators and data typesviestah the

reductions.

acc=ULONG_MAX;
#pragma omp parallel

for (unsigned i=0; i<INPUT_SIZE; ++i)

acc=ULLONG_MAX;

#pragma omp parallel

for(unsigned i=0; i<INPUT_SIZE; ++1i)
#pragma omp for reduction (&:acc)

#pragma omp for reduction (&:acc) for(unsigned j=1; j<OMP_LOOPS; ++j){
for (unsigned j=1; j<OMP_LOOPS; ++j){ delay ();
delay (); acc&=input [1i]*j;
acc&=input [1]*j&ULONG_MAX; acc |=0VERFLOW_MAGIC ;
} }
(a) fast (b) slow
acc=add=aee=ULONG_MAX;
#pragma omp parallel
acc=0; for (unsigned i=0; i<INPUT_SIZE; ++1i)
#pragma omp parallel #pragma omp for reduction (&:acc,add,aee)
for (unsigned i=0; i<INPUT_SIZE; ++i) for (unsigned j=1; j<OMP_LOOPS; ++j) {
#pragma omp for reduction (+:acc) delay () ;
for (unsigned j=1; j<OMP_LOOPS; ++j){ acc&=input [1]*j;

delay ();
acc+=input [i]*input [i]*j*];
}

(c) mixed

add&=(i%2)*input [i]*j;
aee&=((i-1)%2)*input[i]*j;

(d) multi

Figure7. Micro-benchmark kernel codes. The four micro-benchmagksriespectively the fast path, slow path, transition betwfast and
slow path and multiple nowait reductions. ToleERFLOW_MAGIC is a mask employed to set the two most significant bit.to

region. At the end of the parallel region three reductiorscam-
puted.

Our algorithm generates two nowait reductions followed by a
combined reduction-barrier.

As shown in Figure 8(e) and 9(e) the number of atomic op-
erations performed by the peak version is always lower than t
baseline, while run-times are lower or equal to the baselihen
working with more than 4 threads.

When working with only few threads, atomic operations are of
ten uncontested. Thus, the base implementation can ootpettie
peak implementation in these cases. On the other hand, vaken t
number of threads grows the performance of the peak optiioiza
stabilizes and are always better than the baseline.

46 cg

an intermediate aggregate value, and an explicit barrigsésl to
block all other threads.

We have executed the benchmark using the C data set.

Even if our reduction implementation is effective in redwi
the number of issued atomic operations, as shown in Figdje 9(
the run-time is dominated by thenp master sections, thus run-
times do not scale well.

4.7 streamcluster

The streamclusterbenchmark solves the online clustering prob-
lem [3] relevant to the field of data mining. It periodicallpre
sumes a set of data items that are processed in parallel. gxe-ag
gate value is computed to find potential clusters. Sets @f itiatns
are processed within a parallel region implemented by mefas
set of threads. The computation is organized in phases itetim
by barriers. Several reduction operations are used to ctathe

The cg benchmark computes the eigenvalues of a sparse matrix aggregate values.

using the conjugate gradient method [19], relevant to tHd té
computational fluid dynamics. The structure of the codelides
a top-level loop that contains an OpenMP parallel regione Th
parallel region computes aggregate value used in subsebpogn
iterations by means of a reduction at the end of the regiois It
important to note that amp master construct is used to compute

As shown in Figure 8(g) and 9(g) the number of atomics opera-
tions performed by the peak implementations is always |divan
the baseline, and the same holds for run-times.

Since the benchmark employs a monitor structure, it hag-inhe
ent limits to the available parallelism. Thus performanoesinot
scale over 6 threads.

2010/8/1

Run time(s]

Run time[s]

Run time(s]

Run time(s]

T T T T .
0.3 | —o— Base [
—m— Peak
0.2 |- -
0.1} -
0 | | | |
12 4 8 16
Threads
(a) fast
T T T T -
0.3 - —o— Base
—m— Peak
0.2 - -
0.1 -
0 | | | |
12 4 8 16
Threads
(c) mixed
FTT T T —
r —o— Base ||
F —m— Peak
10° ¢ E
102 | E
1 | | | | |
10 12 4 8 16
Threads
(e) 312.swimm
T T T T .
103 E —o— Base||
102 | \\/- E
1 | | | | |
10 12 4 8 16
Threads

(g) streamcluster

Run time(s]

Run time[s]

Run time([s]

Run time[s]

T T T T .
0.3 |- —o— Base [
—m— Peak
0‘27 v 7
0.1 -
0 | | | |
12 4 8 16
Threads
(b) slow
T 7 T T
0.3 |- —o— Base
—m— Peak
0.2 - -
0 | | | |
12 4 8 16
Threads
(d) multi
T T T T .
—e— Base
—m— Peak
10245 [[
10% |- .
10145 [|
1 | | | | |
10 12 4 8 16
Threads
() cg
T T .
400 |- HoBase||
0o Peak
300 |+ —
% =7 I
312.swimm cg streamcluster
Benchmark
(h) Overview

Figure 8. Plot of benchmark run-times. Each graph compares base aidrpes of a single benchmark, varying the number of worker

threads. The last graphs reports run-times of the mostseptative benchmarks ran using 16 threads.

2010/8/1

T T T T T T T T
| —e— Base § | —e— Base 1
—m— Peak —=— Peak
2 o H : 2 107 E
S & i S & :
® r] IS r]
[} [~ 1 [0 [~ B
o - B <% - N
@] L | (@) | |
L Q
IS - b IS - :
8 e
< <
106 |- - 106 |-]
| 5 o o B 1
L1 1 | | [L[| | | L
12 4 8 16 12 4 8 16
Threads Threads
(a) fast (b) slow
T T T T T F T T T T -
| —e— Base 7 I —o— Base 8

—m— Peak

107 107 H —=— Peak

Atomic Operations
T T UL
I Lo
Atomic Operations
T T T TTITT[T
Lol I

108
10° E
I E oo—0 0 0
I I | Ll I I
12 4 8 16 12 4 8 16
Threads Threads
(c) mixed (d) multi
1055 T T T T T T
—eo— Base 1055 { —e— Base .
” —m— Peak 1) —=— Peak
S S
o © s | |
8. 105 - — 8- 10
(e} (@]
L L
§ §
2 z 104.5 [|
104.5 - |
I I I Ll I I
12 4 8 16 12 4 8 16
Threads Threads
(e) 312.swimm (f) co
109 e i T I 109 F— T I
|| —e— Base] |BBBase g
| | —=— Peak i | |B B Peak |
2 108 H = 2 108 H -
il E E o r e
g i 1 g i 7
© [1 © [2291
o - - o 7L 254
o ¢ E 6 0% ZE
L = 1 Q = 221
§ 6l] § 6l 1
g 0 E < 0 ik
5L] s L= ~ 21
107 £ | I I 4 10 EE\ A E\m t22]]
12 4 8 16 312.swimm cg streamcluster
Threads Benchmark
(g) streamcluster (h) Overview

Figure9. Number of issued atomic operations per benchmark. Eacihg@ppares base and peak runs of a particular benchmarka3te |
graph summarizes the number of atomic operations issuduElybst representative benchmarks ran using 16 threads.

9 2010/8/1

5. Reated work

Many barrier synchronization algorithms have been proghddan-
jegowda et al. [21] provide a survey of barrier algorithmsthe
context of OpenMP, reporting good scalability for the tament
barrier.

In the context of distributed computing, where communarati
is more expensive than in shared memory architectures, fhe M
standard [20] includes the notion obllective operationgo per-
form multiple operations in one step, and reduce the number o
exchanged messages.

Shirako et al. [24] introduces the conceptpifaser accumu-

lator to combine reduction and barrier operations in presence of

dynamic parallelism. They rely on atomic read-modify-erih-
structions to safely send reduction partial values to thesph A
tree-like structure for phasers is proposed in [23], with goal

of improving phaser scalability. With respect to our worl8]2o-
cuses on introducing a reduction capability in the X10 [7hgdr
construct. The authors compare their work with the OpenM#P ru
time using the EPCC Syncbench [5]. This makes comparisdm wit
our work difficult both because of the characteristics of ERCC
Syncbench described in Section 4.1 and the different gaaleur
work is geared towards a language agnostic reduction design

Chun and Xuejun [8] address the optimization of barriers and
reductions by a different approach — rather than handliegfakt
paths at runtime, they rely on new primitives for expressing-
strained forms of barrier and reduction constructs.

The exploitation of time spent by threads waiting at basrier
is also addressed in OpenMP [1], by means of the task
directive, which allows the definition of tasks that are exed by
threads while waiting for barrier synchronization.

Packing data into a native word to exploit atomic read-mpodif
write instructions is a well known technique in the field ofking
algorithms. E.g., Russell and Detlefs [22] organize a eatiord to
contain pointer to thread and a three shape bits. Compareaap
operations are then used to atomically bias a lock to a thread

6. Conclusions

In this paper, we have proposed a reduction design to takenadv
tage of the coupling with a barrier synchronization. Ourigiegx-
ploits the unused space in the flag variables of a tournamemt b
rier to carry a partial reduction value, thus reducing th@amnt of
atomic operations.

Our experimental campaign shows a significant reductiohen t
number of atomic operations employed to perform the redosti
as well as a speedup 89.64% on the312.swimmand24.89% on
the streamclustebenchmark.

Future directions for this research line include affinityiepd
association of threads to barrier tree leaves, as well asi@ptige
data-compaction method to further improve of the frequesfdire
fast path.

References
[1] OpenMP Application Program Interface, version 3ARB, 2008.
[2] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. Bnds,

and B. Parady. SPEComp: A new benchmark suite for measuring

parallel computer performance. In R. Eigenmann and M. \édiors,
WOMPAT volume 2104 of_ecture Notes in Computer Scienpages
1-10. Springer, 2001. ISBN 3-540-42346-X.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC enark
suite: characterization and architectural implicatidnsA. Moshovos,
D. Tarditi, and K. Olukotun, editor®ACT, pages 72-81. ACM, 2008.
ISBN 978-1-60558-282-5.

E. D. Brooks. The butterfly barriednt. J. Parallel Program, 15(4):
295-307, 1986.

(31

(4

10

[5] J. M. Bull. Measuring synchronisation and schedulingrneads in
OpenMP. Inin Proceedings of First European Workshop on OpenMP
1999.

M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. |&el
and S. Marlow. Data parallel haskell: a status report. In
DAMP '07: Proceedings of the 2007 workshop on Declara-
tive aspects of multicore programmingages 10-18, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-690-5. doi:
http://doi.acm.org/10.1145/1248648.1248652.

P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. |k,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an objectrigd
approach to non-uniform cluster computing. In R. E. Johreod
R. P. Gabriel, editorsfDOPSLA pages 519-538. ACM, 2005. ISBN
1-59593-031-0.

H. Chun and Y. Xuejun. Improve OpenMP performance by edte
ing BARRIER and REDUCTION constructs. In A. V. Veidenbaum,
K. Joe, H. Amano, and H. Aiso, editod§HPC volume 2858 ot.ec-
ture Notes in Computer Sciengeges 529-539. Springer, 2003. ISBN
3-540-20359-1.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data gsotgeon
large clusters. IOSDI, pages 137-150, 2004.

[10] E. Freudenthal and A. Gottlieb. Process coordinatigth ¥etch-and-
increment. INPASPLOSpages 260-268, 1991.

[11] K. Furlinger, M. Gerndt, and J. Dongarra. Scalabibtyalysis of the
SPEC OpenMP benchmarks on large-scale shared memory raultip
cessors. In Y. Shi, G. D. van Albada, J. Dongarra, and P. M.I@otS
editors, International Conference on Computational Science ¥2)-
ume 4488 ofLecture Notes in Computer Sciengeages 815-822.
Springer, 2007. ISBN 978-3-540-72585-5.

[12] GNU. GNU libgomphttp://gcc.gnu.org/onlinedocs/libgomp/.
[13] D. Grunwald and S. Vajracharya. Efficient barriers fastdbuted

shared memory computers. In H. J. Siegel, edi®BS pages 604—
608. IEEE Computer Society, 1994. ISBN 0-8186-5602-6.

[14] J. L. Hennessy and D. A. PattersonComputer Architecture - A
Quantitative ApproachMorgan Kaufmann, fourth edition, 2007.

[15] D. Hensgen, R. Finkel, and U. Manber. Two algorithms tarrier
synchronizationlInt. J. Parallel Program, 17(1):1-17, 1980.

[16] M. Herlihy. Wait-free synchronizationACM Trans. Program. Lang.
Syst, 13(1):124-149, 1991.

[17] IEEE 754-2008, Standard for Floating-Point Arithmeti€EEE, 2008.

[18] Intel 64 and IA-32 Architectures Software Developer’s Manuntel,
2009.

[19] H. Jin and M. Frumkin. The OpenMP implementation of NASatlel
benchmarks and its performance. Technical report, NAS8919

[20] MPI: A Message-Passing Interface Standard, Version 2Vssage
Passing Interface Forum, 2009.

[21] R. Nanjegowda, O. Hernandez, B. M. Chapman, and H. JialaS
bility evaluation of barrier algorithms for OpenMP. In M. Blilller,
B. R. de Supinski, and B. M. Chapman, editd&@OMP, volume 5568
of Lecture Notes in Computer Sciengages 42-52. Springer, 2009.
ISBN 978-3-642-02284-5.

[22] K. Russell and D. Detlefs. Eliminating synchronizatielated atomic
operations with biased locking and bulk rebiasing. In P. &rrnd
W. R. Cook, editorsOOPSLA pages 263-272. ACM, 2006. ISBN
1-59593-348-4.

[23] J. Shirako and V. Sarkar. Hierarchical phaser for ditalaynchroniza-
tion and reductions in dynamic parallelism. IFDPS IEEE, 2010.

[24] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scheréthaser
accumulators: A new reduction construct for dynamic paliath. In
IPDPS pages 1-12. IEEE, 2009.

(6]

(7]

(8]

2010/8/1

