
An Optimized Reduction Design to Minimize Atomic
Operations in Shared Memory Multiprocessors

Abstract
Reduction operations play a key role in modern massively data
parallel computation. However, current implementations in shared
memory programming APIs such as OpenMP are often cause of
computation bottlenecks due to the high number of atomic opera-
tions involved. We propose a reduction design that takes advantage
of the coupling with a barrier synchronization to optimize the exe-
cution of the reduction. Experimental results show how the number
of atomic operations involved is dramatically reduced, which can
lead to significant improvement in scaling properties on large num-
bers of processing elements. We report a speedup of 59.64% onthe
312.swimmSPEC OMP2001 benchmark and a speedup of 24.89%
on thestreamclusterbenchmark from the PARSEC suite over the
GCC libgompbaseline.

1. Introduction
The rise of multi-core architectures in recent years has ledto the
widespread need for parallel software. Given the limited improve-
ments in clock rates, exploiting parallel execution is needed to guar-
antee performance improvements.

Parallelism can be exploited at several levels of granularity,
from instruction level parallelism to data parallelism to task paral-
lelism. The OpenMP [1] Application Programming Interface (API)
aims at providing an easy-to-use way to program parallel applica-
tions at multiple levels of granularity, implemented on topof the C
and Fortran languages. Specifically, it targets data and task paral-
lelism by providing directives to identify parallel regions of code
and parallel loop constructs.

OpenMP also offers areductionclause to provide some support
for recursive array computation, inspired by thereduceor fold
constructs of functional languages [6].

In functional languages such as Lisp or Haskell,reduce is a
higher-order operator that takes as input a binary functionf , a list
l and an initial valuev, and is defined recursively as follows:

reduce(f, l, v) =

v if |l| = 0,
reduce(f, l[1 :], f(v, l[0])) if |l| > 0

If the binary functionf is associative, it is possible to parallelize
the reduce operation, executing it in approximatelylog2(|l|) steps,
where each stepi computes a set of intermediate resultsti by
applyingf to pairs of values ofti−1.

[Copyright notice will appear here once ’preprint’ option is removed.]

OpenMP support forreduce-like constructs is limited to asso-
ciative and commutative binary operators and, in the case ofFor-
tran, intrinsic procedures, which are also associative andcommuta-
tive functions. Arbitrary functionsf are not supported.

Reduce-inspired constructs are essential for the expression of
data parallelism, as they provide the means to express the extrac-
tion of synthetic results from large amounts of data. Recentworks
in the field of distributed computing [9] show that many data paral-
lel computations can be easily expressed in terms of a reduce-like
construct paired with amap-like construct. A map construct es-
sentially allows the execution of a givenn-ary function on all the
n-uples obtained by taking an element from each ofn sequences of
equal length.

In OpenMP, the parallel loop construct provides the basic data
parallelism, replacing the functional map with a somewhat more
general procedural construct, but still replicating a typical map-
reduce structure.

The parallel loop implements afork-join model, which requires
a single implicit synchronization. In the general case, a single
barrier synchronization is needed for ensuring that all iterations of a
parallel loop are completed at the join point before moving to other
parts of the program. This implicit synchronization can be removed
with a nowait clause, while explicit synchronizations can also be
used to handle data dependencies.

On the other hand, the reduction step, which always takes place
at the end of a parallel loop, requires more synchronization. This
synchronization overhead leads the reduction step to causeloss of
scalability, to the point where reduction overhead can become a
critical issue, as shown in [11] for the312.swimmSPEC OMP2001
benchmark.

The goal of this paper is to introduce an optimized barrier
synchronization and reduction step, by allowing the intermediate
values of the reduction to be carried along by the inter-thread
communication required for the barrier synchronization.

The proposed solution is demonstrated by means of both
OpenMP and pthread-based implementations. The pthread imple-
mentation is stand-alone and introduces a reduction construct.

For OpenMP, we replacelibgomp1 barrier synchronizations in-
volved in a reduction with a tournament barrier [15], which is both
more efficient and scalable, and mirrors the tree structure of the par-
allel reduction. We then use the atomically-accessible flags of the
tournament barrier to store partial reduction values, thusremoving
the need for locks in communicating the partial values.

The rest of this paper is organized as follows. Section 2 in-
troduces the background on barrier synchronization and reduction.
Section 3 provides a detailed description of our solution, while Sec-
tion 4 shows its worth through an experimental campaign on both
benchmark applications and synthetic micro-benchmarks. Finally,
Section 5 provides comparison with the state of the art in reduction

1 libgomp is the OpenMP runtime implementation provided by the GNU
GCC compiler [12].

1 2010/8/1

optimization and Section 6 draws some conclusions and highlights
future research directions.

2. Background
In this Section, we review the background in barrier synchroniza-
tion algorithms and parallel reduction implementation, with an eye
to the implementation of both features in OpenMP.

2.1 Barrier Synchronization

Barrier synchronization overheads account for a large fraction of
the communication time in parallel/concurrent applications.

Barriers can be used with both message passing and shared
memory programming models. In this paper, we will describe bar-
rier algorithms in terms of the shared memory programming model,
since it is the one implemented in OpenMP.

The goal of an optimized barrier algorithm is in both cases to
minimize the communication involved during each barrier opera-
tion. In the case of message passing, this is represented by the pack-
ets sent, while for shared memory the communication is obtained
through the execution of atomic instructions, as their execution is
guaranteed to be correctly observed by threads other than the one
performing them.

The minimization of barrier synchronization overheads has
been addressed by a large number of studies [21] proposing new
barrier algorithms. In general terms, we can identify threeclass of
barrier algorithms:centralized, disseminationandtreebarrier.

The centralized barrier class includes the central counterbar-
rier [10], used inlibgomp; the butterfly barrier [4] belongs to the
dissemination class; the tournament barrier [15] is an example of
a tree barrier. A full analysis of the state of the art is beyond the
scope of this paper, but a good survey can be found in [21].

Distributing the barrier state among threads is a mandatory
feature in the message passing programming models – it allows to
distribute the communication traffic. However, it is also important
in the shared memory programming model, as it allows to reduce
the number of invocations of the cache coherency protocols.

2.2 Reduction Implementations

A reduction operation computes a scalar value as a combination
of values in a sequence. In a OpenMP parallel region, a reduction
is almost always followed by a barrier operation. This allows the
reduction value to be correctly seen by all threads after leaving the
barrier.

The reduction itself can be executed in several different ways.
In the most trivial scheme, the reduction is computed by the mas-
ter thread between two barrier operations. The reduction iscom-
puted sequentially. The first barrier ensures that the master thread
sees a consistent state of the memory – all other threads musthave
finished the previous phase – before starting aggregating values.
The second barrier blocks other threads until the reductionis com-
pleted. Such a simple scheme obviously sacrifices all opportuni-
ties for parallelization, and involves two barrier synchronizations,
but the reduction itself is computed without performing anyread-
modify-write atomic instruction.

In general, however, the OpenMP compiler parallelizes the re-
duction. In this scenario, the reduction value is a variableshared
among all threads. Each thread performs a partial reductionover
private data, and then safely aggregate the partial reduction value
to the global one. In addition to parallelization, this scheme allows
the elimination of the first barrier. On the other hand, the global ag-
gregation can be performed inside a critical section, or be executed
through an atomic read-write-modify instruction – both of which
are expensive.

If the hardware architecture supports fast barrier synchroniza-
tion, it is also possible to perform reductions in a logarithmic num-

ber of steps, using a divide et impera approach with barriersto sep-
arate each step from the following. Since this implementation re-
quireslog2(n) barrier synchronizations, wheren is the size of the
sequence, it is only acceptable when there is hardware support for
fast barriers.

Figure 1 reports an example for each of the three implemen-
tations, using primitives from thelibgomp runtime [12]. The first
example, Figure 1(a), shows a simple serialized implementation,
while the second, Figure 1(b) reports the code generated by GCC
to implement a reduction associated with aomp for directive. The
loop boundarieslw and up are set by the OpenMP runtime and
ensure that accesses to theinput array are orthogonal between
threads. Finally, Figure 1(c) performs a logarithmic reduction. Note
that the code is more complex than previous examples and could be
further optimized.

2.3 Atomic Operations

To allow threads to coordinate their execution, modern micropro-
cessors support atomic memory access operations. In some cases,
the atomicity is guaranteed by hardware properties for memory
read and write operations. For example, on the Intel x86 P6 family
processors every load and store aligned to 8/16/32/64 bits fitting
into a cache line is atomic [18].

However, in most cases the atomic operations are more complex
than simple reads or writes. The two most popular classes of atomic
operations are theread-modify-writeand thecompare-and-swap.

Atomic read-modify-write instructions atomically read a value
from memory, perform an arithmetic or logic operation, and write
the result in the same memory address from which the operand was
read. On modern microprocessors, the atomicity is implemented on
top of the cache coherency mechanism [14].

Compare-and-swap instructions allow to atomically read a value
from the memory, and optionally replace it with the content of
an operand. Compare-and-swap operations are more powerfulthan
any atomic read-modify-write instruction [16], but costs are com-
parable – in both cases, the time spent achieving atomicity is the
dominant cost factor.

3. Combining Barrier and Reduction
To mitigate reductions overhead, we can combine the execution of
each reduction and its associated barrier. This allows to pay syn-
chronization cost once, while performing two operations – reduc-
tion and barrier.

To improve performance, we also aim at reducing the usage of
atomic read-modify-write instructions as much as possible. Thus,
we choosetournament barrier[15] as a starting point for our re-
duction design, since it achieves synchronization withoutperform-
ing any atomic read-modify-write instruction.

3.1 Tournament Barrier

The tournament barrier employs a binary tree data structure, where
each of the threads that need to be synchronized is statically as-
sociated to an arbitrarily chosen leaf. Thus, for synchronizing n
threads, the algorithm uses a tree with2n−1 nodes. The algorithm
operates inlog2n rounds.

The nodes of the barrier tree are partitioned into three sets:
active, passiveandroot nodes. The root set contains only the tree
root, while each pair of siblings nodes is composed by an active and
a passive node. The active and passive nodes are arbitrarilychosen
within the sibling pair.

Figure 2 reports the basictournament_barrier algorithm.
The tournament_barrier procedure manages the entrance of
each thread into a leaf node of the barrier tree, then relies on the
walk_tree procedure to perform the recursive traversal of the tree.

2 2010/8/1

GOMP_barrier ();
tid= omp_get_thread_num ();
if(tid ==0)
{

red =0;
for(i=0; i<SIZE ; ++i)

red += data [i];
}
GOMP_barrier ();

(a) Serialized

private_red =0;
for(i=lw; i<up; ++i)

private_red += data [i];
atomic_add (&red ,

private_red);
GOMP_barrier ();

(b) Parallelized

GOMP_barrier ();
tid=omp_get_thread_num ();
sred [tid]= data [tid];
for(i=1; i<SIZE; i*=2) {

if(tid %(2* i)==0)
sred [tid]+= data [tid+i];

GOMP_barrier ();
}
if(tid ==0)

red=sred [0];
GOMP_barrier ();

(c) Hand-written

Figure 1. Comparison of reduction implementations. In the serialized version the reduction is performed by the master thread, and
constrained by two barrier operations. The parallelized version distributes the computation, eliminating the need ofthe first barrier, but
paying the cost of an atomic read-modify-write atomic instruction. Finally, the last fragment performs a logarithmic reduction. This requires
⌈log2(n)⌉ barrier synchronizations, and is only worth doing when the hardware provides a fast implementation of this construct.

Procedure: tournament barrier

Require: a thread identifiertid
Require: a tournament barrier treetree
Ensure: threadtid waits other before leaving the barrier

1: leaf ← tid to leaf(tree, tid)
2: tsense← load sense from tls()
3: walk tree(leaf, tsense)
4: store sense to tls(tsense)

Procedure: walk tree

Require: a tournament barrier tree nodenode
Require: a sensesense

1: if node is activethen
2: sibling ← get sibling(node)
3: parent← get parent(node)
4: wait(sibling, sense)
5: walk tree(parent, sense)
6: signal(sibling, sense)
7: else if node is passivethen
8: sibling ← get sibling(node)
9: signal(sibling, sense)

10: wait(sibling, sense)
11: end if

Figure 2. Tournament barrier algorithm. The entry point, proce-
duretournament barrier, wraps thewalk tree kernel, a recur-
sive procedure that visits the tournament barrier tree.

A thread entering a passive node (walk_tree, line 7) signals
the thread entering its active sibling that it has reached the barrier
(lines 8-9), then waits for synchronization by spinning on apri-
vate flag (line 10). A thread entering an active node waits forthe
thread associated to its passive sibling (walk_tree, line 4), then it
moves to the parent node, thus entering a new round of the synchro-
nization algorithm (line 5). When it completes the synchronization
algorithm, the thread in the active node notifies the synchronization
to its passive sibling by setting the private flag (line 6).

By construction, the root node is reached by a single thread,and
only when all threads have reached the barrier and are spinning in
some passive node. When the root is reached, the exit phase isiniti-
ated, with notification of the barrier completion being propagated.

Before leaving the barrier, each thread reverses its private sense
flag, to reuse the same barrier for the next synchronization.

n0

n1

n3

t0

n4

t1

n2

n5

t2

n6

t3

Figure 3. Execution of the tournament barrier algorithm. Each
thread enters into the barrier via a statically assigned leaf. The
dashed path is followed by threads entering in an active node. They
climb the tree until a passive node or the root node is reached.

Example 1.Consider the four threads and the associated barrier
tree shown in Figure 3. The barrier tree is a complete binary tree,
with four leaves,n3 to n6. Odd numbered nodes areactive, while
even numbered ones arepassive, except for the root noden0. At the
beginning each thread is assigned to a leaf node. Threadst0 andt2
enter into active nodes and start spinning until they are signalled by
their siblings. Threadst1 and t3 enter passive nodes, signal their
siblings, and start spinning until they are notified during the exit
phase. Oncet0 andt2 have been notified byt1 andt3, they move
to n1 andn2 respectively, starting a new synchronization round. In
this roundt0 is into an active node, whilet2 is in a passive node.
Thus t0 progresses to the root noden0, while t2 waits spinning.
Once t0 reaches the root node, it starts the barrier exit phase.
First t0 returns ton1 and signals tot2 to leave the barrier, then
it moves ton3, signalst1 that synchronization has been performed
and leaves the barrier;t2, in turn, notifiest3. Once notified,t1 and
t3 leave the barrier.

The standard tournament barrier allows avoiding atomic read-
modify-write instructions by exploiting point-to-point synchroniza-
tion – each node contains a flag variable, which is written only by
its sibling. Thus, each flag variable is only written by a single thread
and hence no conflicts can occur.

However, such feature comes at a cost – the tournament barrier
consumes more memory than other barrier algorithms. Moreover,
the size and alignment of the flag must be carefully chosen to avoid

3 2010/8/1

01101 . . . 11 1

container

payload flag

(a) Base

01101 . . . 11

auxiliary

00000 . . . 00 1 1

container

payload path flag

(b) Extended

Figure 4. Layout of the container type. In the base version only
one bit is needed to encode the barrier state, all other can beused to
pack partial reduction values. The extended layout uses onemore
bit to find whether the reduction partial value is packed intothe
container payload or stored in the auxiliary variable.

false-sharing – indeed, if two flag variables share the same cache
line, every update to one of the two triggers the execution ofthe
cache-coherency algorithm, thus degrading performance. The flag
must thus have a size equal to the cache line, even though it only
carries one bit of information – all other bits are just padding. E.g.,
on a machine with a 64-byte (512-bits) wide cache line, each flag
includes 511 bits of unused padding.

3.2 Basic Reduction Design

The key idea of our design is to exploit the free space available in
the tournament barrier flag variable to propagate the partial results
of the reduction operation, computing them within the nodes.

To this end, flag variables are stored into the widest type that
allows atomic read/write access without locking – we will call this
type thecontainer typein the rest of the paper. They are also aligned
to the cache line size, to avoid false-sharing.

The container type is split into two sections, shown in Fig-
ure 4(a):flag bit stores the state of the barrier operation (1 bit);
payloadstores the state of the reduction operation (n−1 bits, where
n is the size of the container type).

In the case of a 64-bit machine with a 64-byte wide cache line,
the container type is a 64-bit integer, aligned to 64-bytes.

As depicted in Figure 4(a), the first bit is the flag bit, while the
remaining bits of the container type represent the payload.

All the bits needed to align the container to the cache line
are wasted, since we cannot access them atomically without using
locks and thus adding an overhead that would prevent the algorithm
from achieving a speedup with respect to existing designs.

A thread entering a passive node stores into its active sibling
both the flag bit and the payload containing its own partial reduc-
tion result. Then, it waits to be notified by its active sibling by spin-
ning on its own flag variable. At each spin, the value of the flagbit
is extracted from the container and checked.

A thread entering an active node first spins over its flag variable,
waiting for the thread associated with the passive sibling node to
reach the barrier. At each spin, the container flag variable is read
and the flag bit is extracted and checked. If the flag bit is set,the
payload is also extracted and aggregated with the private partial
result of the thread. The thread then enters the parent node,starting
a new round of the algorithm.

When a thread returns to an active node after visiting its parent,
the same operations are performed as in the exit phase of the basic
tournament barrier algorithm. The thread notifies its passive sibling
that synchronization has been achieved by setting the flag bit into
its flag variable.

n0

n1

n3

t0

n4

t1

n2

n5

t2

n6

t3

rt0 = 1 rt1 = 1 rt2 = 1 rt3 = 1

rn5
= 1rn3

= 1

rn1
= 2

rt0 = 2

rt0 = 4

rt2 = 2

Figure 5. An example of reduction. There are four threads, each
proposing1 as the value to be aggregated. The reduction operator is
sum. Therti

variable refers to the partial reduction seen by thread
ti, whilerni

is the value of the partial reduction inside nodeni. The
reduction is computed along the dashed path. Partial reductions are
computed while moving from a node to its parent. Passive nodes
sends their partial reduction values to associated active nodes.

In our design, reaching the root node has a double meaning:
not only all threads have reached the barrier, but the reduction is
also computed, and its value is stored in the current thread private
memory space. To make this value readable to all threads, it is
necessary to store it in a global-accessible variable and then force
a memory fence operation. At this point the reduction is completed
and the tournament barrier algorithm can proceed, notifying threads
that synchronization has been achieved.

Example 2.We want to compute the sum of a sequence of un-
signed integer values. Assume that the sequence to be reduced has
been split into four subsequences, and partial aggregate values have
been computed by each of the four threads, as shown in Figure 5.
Each threadti (i ∈ [0 : 3]) enters the barrier carrying a partial
aggregate valuepi. The algorithm performs the same steps as in
the standard tournament barrier implementation show in Figure 3.
In addition, at each step threads in passive nodes pack theirpartial
aggregate value together with the flag value into their sibling node.
Therefore in the first stept1 and t3 store their partial valuesp1

andp3 into nodesn3 andn5. Then,t0 andt2 before moving to the
second step extract from their respective containers the payload and
compute new partial values by aggregating respectivelyp0+p1 and
p2 + p3. In the second stept2 packs its computed partial value into
n1, where it is extracted byt0 and combined to obtain the global
reduction valuep0 + p1 + p2 + p3. This value is published byt0
when it reaches the root noden0. The exit phase is unmodified with
respect to Example 1.

3.3 Fast Path Optimization

The basic reduction design represents afast execution path, which
is only semantically correct under the condition that the reduction
data-type fits the size of the container payload. To handle the re-
maining cases, a fall-backslow pathwill be introduced in Section .

The efficiency of the fast path strictly depends on the ability of
the base tournament barrier algorithm to parallelize the reduction
operation as well as to minimize the number of atomic operations.
The reduction parallelism is achieved by exploiting the hierarchical
structure of the barrier tree, while independence derives from lim-
iting the entities performing the partial reductions to two, namely
reader and writer. Thus anf-way tournament barrier[13] would
not be as effective as a base algorithm for our purpose.

4 2010/8/1

Procedure: path management

Require: a partial reduction valuedata
Require: a passive tournament barrier nodenode
Ensure: reduction information is communicated to the active sib-

ling of node
1: sibling ← get sibling(node)
2: if fits(data, payload size) then
3: sibling.container ← pack(data,FAST PATH,flag)

4: else
5: siblings.auxiliary ← data
6: mfence()
7: sibling.container ← pack(0, SLOW PATH,flag)
8: end if

Figure 6. Path management algorithm: when the partially reduced
value fits the payload, the fast path is taken; otherwise a slow path
involving a memory fence is triggered.

The fast path requires only one memory fence. The thread that
reaches the root node performs this memory fence to make the final
result of the reduction visible to all threads.

While the ability to take the fast path is dependent on the reduc-
tion data type, it is independent from the operator used to aggregate
values. As long as partial reduction values fit into the container pay-
load, atomic read-modify-write operations and memory fences can
be avoided.

3.4 Slow Path Management

The slow pathis designed as an extension of the basic reduction
algorithm to handle the case when the reduction data-type does not
fit the container payload.

To this end, the container layout has been further modified,
as shown in Figure 4(b), to reserve space for a 1 bit field – the
path field. Consequently, the payload field is shrunk by 1 bit. An
auxiliary variable is added to the node state to hold the partial
reduction value.

Figure 6 shows the pseudo-code of the path management algo-
rithm. When the thread in the passive node needs to propagatethe
reduction value to the thread associated to the active sibling, the
management algorithm is invoked. If the partial reduction does not
fit into the payload (line 2), it is stored into the auxiliary variable
(line 5) associated with the active sibling of the current node. Then
a memory fence is issued (line 6). Finally theflag andpath fields
of the container are set.

Correspondingly, active nodes detect where to read the reduc-
tion partial value by reading the path bit of their container. If the
path bit is set, the slow path has been taken, and the reduction par-
tial value can be found in the auxiliary variable associatedwith the
active node. Otherwise, the fast path has been executed – thereduc-
tion partial value is packed into the payload (line 3).

Note that the memory fence is necessary to guarantee that the
partial reduction value is stored into the auxiliary variable before
the flag and path bits are set, but induces an increased latency. Such
fence instructions are not issued on reductions performed using the
fast path, since in this case the partial reduction values and the flags
are written atomically.

Since modern processors are usually 64-bit based, the payload
is large enough to hold partial reduction values of most native
scalar data-types. Therefore the slow path is rarely taken.In the
next Section, we show how to deal with larger data types and still
benefit from the fast path.

3.5 Compact Data Representation

Taking the fall-back slow path is not always necessary when the
data size is too wide by just 2 bits. As an example, consider a
reduction over 32-bit unsigned integers on a 32-bit machine. Since
we use 1 bit to represent the flag and 1 for the path field, the payload
is not wide enough to store a 32-bit unsigned integer. Thus, in the
many cases where the values involved in the reduction never exceed
230 − 1, we could still use the fast path – the same might not be
true in the case of signed integers, though.

The packing function used to store the partial reduction values
into the payload is therefore parametrized with respect to the reduc-
tion data type and values. When working with the widest unsigned
integer type that allows atomic read/write access, the packing func-
tion checks whether the value can actually fit into the payload (i.e.,
the two most significant bits are not set).

In these cases, the algorithm is not forced to take the slow path
over all nodes – path selection strictly depends on the actual value
of the reduction in each active thread. If a partial reduction value
follows a slow path, this does not force a slow path for the other
threads. In many cases, such as when a reduction is used to sum
partial counters, it is more likely to overflow payload bounds only
in the last rounds of the algorithm, which also involve only few
threads, thus using a fast path in most nodes of the barrier tree.

To exploit this path optimization in the very common case
where reductions are performed over word-size floating point val-
ues, we need to recover two bits from the floating point repre-
sentation, without losing precision. IEEE double precision floating
point numbers [17]fp are represented over 64 bits,〈fp63 . . . fp0〉,
with the following interpretation:sign = fp63 holds the sign,
exp = 〈fp62 . . . fp52〉 represent the biased exponent, and all
other bits hold themantissa (except the first digit, which is im-
plicitly set at 1). Thus fp represent the floating point number
(−1)sign × 2exp−1023 × (1.0 + mantissa).

To preserve precision, the algorithm cannot simply discardthe
least significant bits of the mantissa. We therefore operatein the
same way as for the integers, assuming implicit values for two
bits. These bits, and the relative assumed values, must be chosen
to maximize the execution frequency of the fast path.

The distribution of mantissa bits is hard to predict, and making
the sign implicit would limit the fast path to just positive or negative
values. Thus, we have to choose two bits from the exponent. Since
the exponent is biased, the first two bits of the exponent partition
the space of floating point numbers in four equally sized subspaces.
The102 subspace contains exponents ranging from1 to 512, mak-
ing it a good candidate for the assumed value. The112 subspace
represents very large numbers (in modulo), that are expected to ap-
pear late if at all in the reduction, while002 represents very small
values, which would often be overshadowed by larger values early
in the partial computations. Finally, the012 subspace contains ex-
ponents between−511 and0, which makes it an excellent candi-
date, since it represents most of the range(2,−2) (excluding the
values with a modulo close to zero), which is suitable for many
computations.

In the end, the choice between012 and102 mostly depends on
the application domain. For the experiments reported in this paper,
we use the012 setup.

3.6 Nowait Reductions

Sometimes, it is necessary to aggregate different variables at a syn-
chronization point, and there are no data dependecies amongthe
different reduction operations. In the case of multiple consecutive
reductions, we could still use a combined reduction/barrier opera-
tion for each reduction operation. However, this scheme enforces
some useless synchronizations, as once a thread has reacheda pas-
sive node and has sent its reduction partial value to its active sibling,

5 2010/8/1

it is no longer necessary to wait at the barrier, as synchronization is
not actually needed except in the last reduction. We call this kind
of reductionsnowait reductions.

Nowait reductions are easily expressed within OpenMP pro-
grams. Work-sharing constructs, likeomp for, can be tagged with
the nowait clause to avoid a barrier operation before leaving the
construct. If areduction clause is also present, our combined bar-
rier algorithm can be executed in nowait mode to compute the re-
duction value, issuing fewer atomic instructions than standard im-
plementation.

The base algorithm has been modified to support nowait reduc-
tions. A threadti reaching a passive node sends the reduction par-
tial value to its siblingtj , and starts waiting for a synchronization
achieved signal. Once notified, threadtj performs the local aggre-
gation pass, and then releases threadti beforemoving to the parent
node. This allowsti to leave the barrier earlier with respect to the
base algorithm, and the exit phase is not performed at all.

This scheme keeps into the barrier only those threads that are
actually working to compute partial values of the reduction, while
all other can proceed to the next program statement. When the
following statement is also a combined barrier/reduction operation,
reductions are pipelined.

When operating in nowait mode, the thread reaching the tree
root does not issue any memory fence, since synchronizationis
not needed, and so publishing the reduction global value is not
mandatory. Consequently, if global synchronization is needed, the
last barrier operation cannot be performed in nowait mode.

4. Experimental evaluation
Even though reduction is a common operation in many real world
applications, there are few benchmarks designed to measureits per-
formance. Even suites specifically designed to benchmark OpenMP
implementations, such as SPEC and NAS include only a few pro-
grams that include reductions, and even fewer where reduction rep-
resents a large share of the computation time. Thus, we selected
from each suite those benchmarks that actually contain enough re-
ductions to make it worth optimizing them. To supplement these
benchmarks, we also provide some micro-benchmarks to measure
specific properties.

4.1 Benchmarks

We select a set of benchmarks from the most popular suites tar-
geting shared memory parallel applications: SPEC OMP2001 [2],
NAS [19], and PARSEC [3]. Fürlinger et al. [11] show the bot-
tlenecks for the SPEC OMP2001 benchmarks. According to their
analysis,312.swimm and310.wupwisem are the only benchmark
in the suite where reductions have a significant impact, though
310.wupwisem uses complex data types, and thus is not optimis-
able in our framework. PARSEC and NAS also provide a single
interesting benchmark each,streamclusterandcg.

In addition to evaluation on benchmark applications, synthetic
micro-benchmarks are useful to analyze the performance proper-
ties of the proposed reduction design. The only well known micro-
benchmark suite for OpenMP constructs is EPCC [5]. The EPCC
syncbenchbenchmark is designed to stress reduction computations.
Its kernel is aomp parallel region. However, the GCC OpenMP
implementation introduces implicit barriers at both region start and
end. Since the region body in the benchmark does not perform any
relevant computation, GCC-induced synchronizations dominate the
benchmark runtime, making it all but impossible to use it forits
designated purpose. Moreover,syncbenchdoes not help in under-
standing the behavior of the reduction design. Therefore, we pro-
vide in Section 4.4 four synthetic micro-benchmarks.

Table 1 shows the resulting benchmark set, characterized by
the dynamic count of reduction operations, as well as by the type

of reductions and the data types involved. The set covers allthe
interesting data types: integers and floating point numbers, in the
latter case including both single and double precision.

4.2 GCC Optimization

All benchmarks exceptstreamclusterare parallelized exploiting
OpenMP directives. Thus, we have introduced in the GCC OpenMP
compiler support for our combined barrier and reduction imple-
mentation. When a reduction clause that can be optimized is found,
a GCC optimization pass identifies the barrier operations executed
after the reduction, and replaces both with the invocation of our
combined reduction and barrier. To this end, we have also aug-
mented the GCC OpenMP runtime,libgomp, with our barrier im-
plementation. To measure the efficiency of the combined barrier
and reduction (and not the efficiency of the barrier alone), we still
rely on the default barrier implementation (a central counter bar-
rier) in all cases except those where the combined barrier and re-
duction is used.

4.3 Experimental Setup

The experimental campaign has been conducted on a AMD NUMA
machine with four nodes, each a quad core Opteron 8378 proces-
sor. Each core has a two-level private cache hierarchy. L1 cache is
composed by a 64KBytes data cache and by a 64KBytes instruction
cache. L2 cache is an unified 512KBytes cache. All cores within a
node share an unified 6144KBytes L3 cache. Inter-node communi-
cation is supported by a fully-connected network.

All benchmarks are compiled with the GCC 4.6 compiler in
two flavors:baseandpeak. Base compilation is the reference ex-
ecution obtained using an unmodified GCC compiler and runtime,
while peak compilation applies optimization to use our combined
reduction-barrier.

For each flavor, we register both the execution times, summa-
rized in Figure 8 and the number of atomic operations performed,
shown in Figure 9. All benchmarks are run with a number of
threads varying from 1 to 16 – the maximum available hardware
parallelism.

4.4 Micro-benchmarks

To stress our barrier implementation, we have developed four
micro-benchmarks. The kernels are reported on Figure 7.

The fast micro-benchmark in Figure 7(a) stresses the exe-
cution of the fast path. Conversely theslow micro-benchmark
(Figure 7(b)) always triggers the slow path. Themixed micro-
benchmark (Figure 7(c)) evaluates the case where executionstarts
from the fast path and then triggers the slow path. Finally, themulti
micro-benchmark (Figure 7(d)) targets the nowait reduction behav-
ior in the case of multiple reductions in the same loop.

In all cases, we compare our design with thelibgompbaseline.
The results show that for the fast path and the multiple nowait
reductions the number of atomic operations is very low and scales
well over a larger amount of threads. However, themulti micro-
benchmark shows that greater benefits are achieved when nowait
reductions are involved since in this case our design significantly
reduces the amount of synchronization, thus obtaining a major
performance improvement over thelibgompbaseline.

On the other hand, theslowandmixedmicro-benchmarks show
that our design does not significantly degrade performance even
when the slow path is triggered.

4.5 312.swim m

This benchmark numerically solves a shallow water modelling
problem relevant to weather prediction [2]. It repeatedly executes a
computationally intensive loop body containing a parallelOpenMP

6 2010/8/1

Benchmark Suite Field Language Reductions Operator Data Type Data Size
(bits)

312.swimm SPEC OMP2001 Weather prediction Fortran 2400 + floating point 64
cg (class C) NPB Fluid dynamics Fortran 3900 + floating point 64

streamcluster PARSEC Online clustering C 4235 + unsigned integer 32

fast Micro-benchmark C 50000 & unsigned integer 64
slow Micro-benchmark C 50000 & unsigned integer 64

mixed Micro-benchmark C 50000 + unsigned integer 64
multi Micro-benchmark C 50000 & unsigned integer 64

Table 1. Benchmark characterization: dynamic count of reductions is reported, together with the operators and data types involved in the
reductions.

acc=ULONG_MAX ;
#pragma omp parallel
for(unsigned i=0; i<INPUT_SIZE ; ++i)

#pragma omp for reduction (&: acc)
for(unsigned j=1; j<OMP_LOOPS ; ++j){

delay ();
acc&= input[i]*j&ULONG_MAX ;

}
(a) fast

acc=ULLONG_MAX ;
#pragma omp parallel
for(unsigned i=0; i<INPUT_SIZE ; ++i)

#pragma omp for reduction (&: acc)
for(unsigned j=1; j< OMP_LOOPS ; ++j){

delay();
acc &= input[i]*j;
acc |= OVERFLOW_MAGIC ;

}
(b) slow

acc =0;
#pragma omp parallel
for(unsigned i=0; i<INPUT_SIZE ; ++i)

#pragma omp for reduction (+: acc)
for(unsigned j=1; j<OMP_LOOPS ; ++j){

delay ();
acc+= input[i]* input[i]*j*j;

}
(c) mixed

acc=add=aee= ULONG_MAX ;
#pragma omp parallel
for(unsigned i=0; i<INPUT_SIZE ; ++i)

#pragma omp for reduction (&:acc ,add ,aee)
for(unsigned j=1; j<OMP_LOOPS ; ++j) {

delay();
acc&= input[i]*j;
add &=(i%2)* input[i]*j;
aee &=((i -1)%2)* input[i]*j;

}
(d) multi

Figure 7. Micro-benchmark kernel codes. The four micro-benchmarks test respectively the fast path, slow path, transition between fast and
slow path and multiple nowait reductions. TheOVERFLOW_MAGIC is a mask employed to set the two most significant bit to1.

region. At the end of the parallel region three reductions are com-
puted.

Our algorithm generates two nowait reductions followed by a
combined reduction-barrier.

As shown in Figure 8(e) and 9(e) the number of atomic op-
erations performed by the peak version is always lower than the
baseline, while run-times are lower or equal to the baselinewhen
working with more than 4 threads.

When working with only few threads, atomic operations are of-
ten uncontested. Thus, the base implementation can outperform the
peak implementation in these cases. On the other hand, when the
number of threads grows the performance of the peak optimization
stabilizes and are always better than the baseline.

4.6 cg

The cg benchmark computes the eigenvalues of a sparse matrix
using the conjugate gradient method [19], relevant to the field of
computational fluid dynamics. The structure of the code includes
a top-level loop that contains an OpenMP parallel region. The
parallel region computes aggregate value used in subsequent loop
iterations by means of a reduction at the end of the region. Itis
important to note that aomp master construct is used to compute

an intermediate aggregate value, and an explicit barrier isused to
block all other threads.

We have executed the benchmark using the C data set.
Even if our reduction implementation is effective in reducing

the number of issued atomic operations, as shown in Figure 9(f),
the run-time is dominated by theomp master sections, thus run-
times do not scale well.

4.7 streamcluster

The streamclusterbenchmark solves the online clustering prob-
lem [3] relevant to the field of data mining. It periodically con-
sumes a set of data items that are processed in parallel. An aggre-
gate value is computed to find potential clusters. Sets of data items
are processed within a parallel region implemented by meansof a
set of threads. The computation is organized in phases delimited
by barriers. Several reduction operations are used to compute the
aggregate values.

As shown in Figure 8(g) and 9(g) the number of atomics opera-
tions performed by the peak implementations is always lowerthan
the baseline, and the same holds for run-times.

Since the benchmark employs a monitor structure, it has inher-
ent limits to the available parallelism. Thus performance does not
scale over 6 threads.

7 2010/8/1

1 2 4 8 16
0

0.1

0.2

0.3

Threads

R
un

tim
e[

s]

Base
Peak

(a) fast

1 2 4 8 16
0

0.1

0.2

0.3

Threads

R
un

tim
e[

s]

Base
Peak

(b) slow

1 2 4 8 16
0

0.1

0.2

0.3

Threads

R
un

tim
e[

s]

Base
Peak

(c) mixed

1 2 4 8 16
0

0.1

0.2

0.3

Threads

R
un

tim
e[

s]

Base
Peak

(d) multi

1 2 4 8 16
101

102

103

Threads

R
un

tim
e[

s]

Base
Peak

(e) 312.swimm

1 2 4 8 16
101

101.5

102

102.5

Threads

R
un

tim
e[

s]

Base
Peak

(f) cg

1 2 4 8 16
101

102

103

Threads

R
un

tim
e[

s]

Base
Peak

(g) streamcluster

312.swimm cg streamcluster

100

200

300

400

Benchmark

R
un

tim
e[

s]

Base
Peak

(h) Overview

Figure 8. Plot of benchmark run-times. Each graph compares base and peak runs of a single benchmark, varying the number of worker
threads. The last graphs reports run-times of the most representative benchmarks ran using 16 threads.

8 2010/8/1

1 2 4 8 16

106

107

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(a) fast

1 2 4 8 16

106

107

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(b) slow

1 2 4 8 16

106

107

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(c) mixed

1 2 4 8 16

106

107

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(d) multi

1 2 4 8 16

104.5

105

105.5

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(e) 312.swimm

1 2 4 8 16

104.5

105

105.5

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(f) cg

1 2 4 8 16

105

106

107

108

109

Threads

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(g) streamcluster

312.swimm cg streamcluster

105

106

107

108

109

Benchmark

A
to

m
ic

O
pe

ra
tio

ns

Base
Peak

(h) Overview

Figure 9. Number of issued atomic operations per benchmark. Each graph compares base and peak runs of a particular benchmark. The last
graph summarizes the number of atomic operations issued by the most representative benchmarks ran using 16 threads.

9 2010/8/1

5. Related work
Many barrier synchronization algorithms have been proposed. Nan-
jegowda et al. [21] provide a survey of barrier algorithms inthe
context of OpenMP, reporting good scalability for the tournament
barrier.

In the context of distributed computing, where communication
is more expensive than in shared memory architectures, the MPI
standard [20] includes the notion ofcollective operationsto per-
form multiple operations in one step, and reduce the number of
exchanged messages.

Shirako et al. [24] introduces the concept ofphaser accumu-
lator to combine reduction and barrier operations in presence of
dynamic parallelism. They rely on atomic read-modify-write in-
structions to safely send reduction partial values to the phaser. A
tree-like structure for phasers is proposed in [23], with the goal
of improving phaser scalability. With respect to our work [23] fo-
cuses on introducing a reduction capability in the X10 [7] phaser
construct. The authors compare their work with the OpenMP run-
time using the EPCC Syncbench [5]. This makes comparison with
our work difficult both because of the characteristics of theEPCC
Syncbench described in Section 4.1 and the different goals,as our
work is geared towards a language agnostic reduction design.

Chun and Xuejun [8] address the optimization of barriers and
reductions by a different approach – rather than handling the fast
paths at runtime, they rely on new primitives for expressingcon-
strained forms of barrier and reduction constructs.

The exploitation of time spent by threads waiting at barriers
is also addressed in OpenMP [1], by means of theomp task
directive, which allows the definition of tasks that are executed by
threads while waiting for barrier synchronization.

Packing data into a native word to exploit atomic read-modify-
write instructions is a well known technique in the field of locking
algorithms. E.g., Russell and Detlefs [22] organize a native word to
contain pointer to thread and a three shape bits. Compare-and-swap
operations are then used to atomically bias a lock to a thread.

6. Conclusions
In this paper, we have proposed a reduction design to take advan-
tage of the coupling with a barrier synchronization. Our design ex-
ploits the unused space in the flag variables of a tournament bar-
rier to carry a partial reduction value, thus reducing the amount of
atomic operations.

Our experimental campaign shows a significant reduction in the
number of atomic operations employed to perform the reductions,
as well as a speedup of59.64% on the312.swimmand24.89% on
thestreamclusterbenchmark.

Future directions for this research line include affinity-guided
association of threads to barrier tree leaves, as well as an adaptive
data-compaction method to further improve of the frequencyof the
fast path.

References
[1] OpenMP Application Program Interface, version 3.0. ARB, 2008.

[2] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones,
and B. Parady. SPEComp: A new benchmark suite for measuring
parallel computer performance. In R. Eigenmann and M. Voss,editors,
WOMPAT, volume 2104 ofLecture Notes in Computer Science, pages
1–10. Springer, 2001. ISBN 3-540-42346-X.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications.In A. Moshovos,
D. Tarditi, and K. Olukotun, editors,PACT, pages 72–81. ACM, 2008.
ISBN 978-1-60558-282-5.

[4] E. D. Brooks. The butterfly barrier.Int. J. Parallel Program., 15(4):
295–307, 1986.

[5] J. M. Bull. Measuring synchronisation and scheduling overheads in
OpenMP. InIn Proceedings of First European Workshop on OpenMP,
1999.

[6] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller,
and S. Marlow. Data parallel haskell: a status report. In
DAMP ’07: Proceedings of the 2007 workshop on Declara-
tive aspects of multicore programming, pages 10–18, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-690-5. doi:
http://doi.acm.org/10.1145/1248648.1248652.

[7] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In R. E. Johnsonand
R. P. Gabriel, editors,OOPSLA, pages 519–538. ACM, 2005. ISBN
1-59593-031-0.

[8] H. Chun and Y. Xuejun. Improve OpenMP performance by extend-
ing BARRIER and REDUCTION constructs. In A. V. Veidenbaum,
K. Joe, H. Amano, and H. Aiso, editors,ISHPC, volume 2858 ofLec-
ture Notes in Computer Science, pages 529–539. Springer, 2003. ISBN
3-540-20359-1.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. InOSDI, pages 137–150, 2004.

[10] E. Freudenthal and A. Gottlieb. Process coordination with fetch-and-
increment. InASPLOS, pages 260–268, 1991.

[11] K. Fürlinger, M. Gerndt, and J. Dongarra. Scalabilityanalysis of the
SPEC OpenMP benchmarks on large-scale shared memory multipro-
cessors. In Y. Shi, G. D. van Albada, J. Dongarra, and P. M. A. Sloot,
editors,International Conference on Computational Science (2), vol-
ume 4488 ofLecture Notes in Computer Science, pages 815–822.
Springer, 2007. ISBN 978-3-540-72585-5.

[12] GNU. GNU libgomp.http://gcc.gnu.org/onlinedocs/libgomp/.

[13] D. Grunwald and S. Vajracharya. Efficient barriers for distributed
shared memory computers. In H. J. Siegel, editor,IPPS, pages 604–
608. IEEE Computer Society, 1994. ISBN 0-8186-5602-6.

[14] J. L. Hennessy and D. A. Patterson.Computer Architecture - A
Quantitative Approach. Morgan Kaufmann, fourth edition, 2007.

[15] D. Hensgen, R. Finkel, and U. Manber. Two algorithms forbarrier
synchronization.Int. J. Parallel Program., 17(1):1–17, 1980.

[16] M. Herlihy. Wait-free synchronization.ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[17] IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE, 2008.

[18] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel,
2009.

[19] H. Jin and M. Frumkin. The OpenMP implementation of NAS parallel
benchmarks and its performance. Technical report, NASA, 1999.

[20] MPI: A Message-Passing Interface Standard, Version 2.2. Message
Passing Interface Forum, 2009.

[21] R. Nanjegowda, O. Hernandez, B. M. Chapman, and H. Jin. Scala-
bility evaluation of barrier algorithms for OpenMP. In M. S.Müller,
B. R. de Supinski, and B. M. Chapman, editors,IWOMP, volume 5568
of Lecture Notes in Computer Science, pages 42–52. Springer, 2009.
ISBN 978-3-642-02284-5.

[22] K. Russell and D. Detlefs. Eliminating synchronization-related atomic
operations with biased locking and bulk rebiasing. In P. L. Tarr and
W. R. Cook, editors,OOPSLA, pages 263–272. ACM, 2006. ISBN
1-59593-348-4.

[23] J. Shirako and V. Sarkar. Hierarchical phaser for scalable synchroniza-
tion and reductions in dynamic parallelism. InIPDPS. IEEE, 2010.

[24] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer.Phaser
accumulators: A new reduction construct for dynamic parallelism. In
IPDPS, pages 1–12. IEEE, 2009.

10 2010/8/1

