
Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

C Programming Review & Productivity Tools

Giovanni Agosta

Piattaforme Software per la Rete – Modulo 2

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Outline

1 Preliminaries

2 C Programming
Function Pointers
Data Types and Qualifiers
Variadic Functions

3 Tools for Productivity in Programming
Overview
Build Automation
Code Versioning
Debugging

4 Conclusions

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Preliminaries

What are we looking at in this course?

Using TCP/IP in application software

The Client-Server model

Application protocols

standard: remote login, file transfer, email, etc.
non-standard
using standard protocols for non-standard uses: telnet

towel.blinkenlights.nl

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Preliminaries

What are we looking at in this course?

Using TCP/IP in application software

The Client-Server model

Application protocols

But we also need good programming skills!

C programming language

Programming well

Shell scripting

Programming productivity tools (make, gdb)

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Organization of the course

Syllabus

The Practice of Programming

Network Administration and Security

TPC/IP & Client-Server Applications

Advanced topics (kernel modules, wireless networks)

Labs & Projects

Both are optional

Labs: try out SW development practices, building an
application

Project: a more advanced design & development task,
replacing the exam

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Evaluation

Written exam

Each module is assessed separately

Time for exam: 90’

Structure: one/two exercises per syllabus item

Projects

Multiple batches of projects

First batch will be presented on 12/4

Second batch will be presented near the end of the course

Project replaces one (and only one) module

Must be taken by two (or three) students, all are responsible
for the entire work

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

1 Preliminaries

2 C Programming
Function Pointers
Data Types and Qualifiers
Variadic Functions

3 Tools for Productivity in Programming
Overview
Build Automation
Code Versioning
Debugging

4 Conclusions

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Function Pointers
Overview

Generalities

Functions are not variables, per se

But, you can declare function pointers

A first example

i n t p l u s ( i n t a , i n t b ){ return a+b ; }
i n t a p p l y ( i n t x , i n t y ,

i n t (∗ f u n c p t r ) ( int , i n t ) ){
return f u n c p t r ( x , y ) ;

}

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Function Pointers
Usage

Switch-like constructs

Generic functions

Callbacks

calc.c

qsort.c

obj.c

Let’s have a look at these examples...

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Data Types and Qualifiers
Unions

What

A type for representing multiple types

Forces alignment to the longest type

Why

Need fixed size structures with variable content

Example

typedef union {
char c h r ;
i n t i t g ;
char ∗ s t r ;

} d a t a ;

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Data Types and Qualifiers
Type Qualifiers

Volatile

Forces all accesses to be in memory

Needed when the compiler may be unaware of external
accesses to a variable

v o l a t i l e i n t a ;

Const

The variable is considered read-only by the compiler

const i n t a = 1 ;

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Data Types and Qualifiers
Storage Class Specifiers

auto

Standard automatic variable

register : subclass where address cannot be taken

static

Applied to variables: variable persist between function calls

Applied to functions: function is not seen outside the
compilation unit

extern

Applied to variables: variable declared outside the function

Applied to functions: function defined in another compilation
unit

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Function Pointers
Data Types and Qualifiers
Variadic Functions

Variadic Functions
Handling variable parameters in C

stdarg.h

Defines the following macros:

va list : data type

void va start ( va list args , last): initialize scanning,
starting from parameter last

void va end( va list args): end scanning

type va arg( va list args , type): get next argument, casting
to type type

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

1 Preliminaries

2 C Programming
Function Pointers
Data Types and Qualifiers
Variadic Functions

3 Tools for Productivity in Programming
Overview
Build Automation
Code Versioning
Debugging

4 Conclusions

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Tools for Productivity in Programming
Overview

Tasks

Compiling

Building

Versioning

Debugging

There are several solutions for each task!

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Tools for Productivity in Programming
Overview

Solutions

Compiling: gcc, icc

Building: make, SCons, autoconf, CMake

Versioning: mercurial, git, svn, cvs

Debugging: gdb, idb

We focus on the GNU tools

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Build Automation
GNU make

GNU make Basics

Variables

Rules

Patterns, wildcards and much more

Today, we will look at a few basics only!

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Build Automation
GNU make

Automatic Variables

$@ The file name of the target
$< The name of the first prerequisite
$? The names of all prerequisites newer than the target
$ˆ The names of all prerequisites
$+ Like above, but keeps duplicates

Variable definition

objects = *.o
objects := $(wildcard *.o)

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Build Automation
GNU make

Rules

%.o: %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

qsort: qsort.c
gcc -o qsort qsort.c

Variable definition

Generic vs specific rules

Prefer specific to generic: shortest stem rule

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Versioning
Mercurial

A Quick Primer

create a repository hg init directory
copy a (remote) repository hg clone address
add files to repository hg add files
commit changes to changeset hg commit -m ’comment’
push changes to other repository hg push address
pull changes to other repository hg pull address
merge different history lines hg merge

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Overview
Build Automation
Code Versioning
Debugging

Debugging
GNU Debugger (gdb)

A Quick Primer

Compiling for debugging: -g flag

Setting arguments and running: set args, run

Multiple threads: info threads, thread n

Breakpoints: break at function, line or address, can be
conditional or thread-specific

Continuing execution: continue (to next breakpoint), step
(to next source line), next (to next line in same stack frame)

Get info about the program: info

Examine the stack: bt, up, down

Examine data: print

G. Agosta C Programming Review & Productivity Tools



Preliminaries
C Programming

Tools for Productivity in Programming
Conclusions

Concluding Remarks

What to do now?

Programming in C with dynamic libraries

Write a dynamic library supporting a data type (e.g., lists or
trees)
Use it in implementing a simple program (e.g., indexing

Setting up a code project

Using versioning
Creating makefiles

G. Agosta C Programming Review & Productivity Tools


	Preliminaries
	C Programming
	Function Pointers
	Data Types and Qualifiers
	Variadic Functions

	Tools for Productivity in Programming
	Overview
	Build Automation
	Code Versioning
	Debugging

	Conclusions

