C Programming Review & Productivity Tools

Giovanni Agosta

Piattaforme Software per la Rete — Modulo 2

G. Agosta C Programming Review & Productivity Tools

Outline

@ Preliminaries

© C Programming
@ Function Pointers
@ Data Types and Qualifiers
@ Variadic Functions

© Tools for Productivity in Programming
@ Overview
o Build Automation
@ Code Versioning
@ Debugging

@ Conclusions

G. Agosta C Programming Review & Productivity Tools

Preliminaries

Preliminaries

@ Using TCP/IP in application software
@ The Client-Server model
@ Application protocols

e standard: remote login, file transfer, email, etc.
e non-standard

e using standard protocols for non-standard uses: telnet
towel.blinkenlights.nl

G. Agosta C Programming Review & Productivity Tools

Preliminaries

Preliminaries

What are we looking at in this course?

@ Using TCP/IP in application software
@ The Client-Server model

@ Application protocols

But we also need good programming skills!

@ C programming language
@ Programming well

@ Shell scripting
°

Programming productivity tools (make, gdb)

G. Agosta C Programming Review & Productivity Tools

Preliminaries

Organization of the course

Syllabus

@ The Practice of Programming
@ Network Administration and Security
@ TPC/IP & Client-Server Applications

@ Advanced topics (kernel modules, wireless networks)

Labs & Projects

@ Both are optional

@ Labs: try out SW development practices, building an
application

@ Project: a more advanced design & development task,
replacing the exam

G. Agosta C Programming Review & Productivity Tools

Preliminaries

Evaluation

@ Each module is assessed separately
@ Time for exam: 90’

@ Structure: one/two exercises per syllabus item

@ Multiple batches of projects
@ First batch will be presented on 12/4

@ Second batch will be presented near the end of the course
@ Project replaces one (and only one) module

@ Must be taken by two (or three) students, all are responsible
for the entire work

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

9 C Programming
@ Function Pointers
@ Data Types and Qualifiers
@ Variadic Functions

G. Agosta C Programming Review & Productivity Tools

C Programmin Function Pointers
g g Data Types and Qualifiers
Variadic Functions

Function Pointers

Overview

Generalities

@ Functions are not variables, per se

@ But, you can declare function pointers

A first example

int plus(int a, int b){ return a+b; }
int apply(int x, int vy,

int (xfuncptr)(int, int)){
return funcptr(x,y);

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

Function Pointers
Usage

@ Switch-like constructs @ calc.c
@ Generic functions @ gsort.c
o Callbacks @ obj.c
Let's have a look at these examples... J

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

Data Types and Qualifiers

Unions

@ A type for representing multiple types

@ Forces alignment to the longest type

Need fixed size structures with variable content

typedef union {
char chr;
int itg;
char xstr;

} _data;

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

Data Types and Qualifiers

Type Qualifiers

Volatile

@ Forces all accesses to be in memory

@ Needed when the compiler may be unaware of external
accesses to a variable

volatile int a;

@ The variable is considered read-only by the compiler

const int a = 1;

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

Data Types and Qualifiers

Storage Class Specifiers

@ Standard automatic variable

@ register: subclass where address cannot be taken

@ Applied to variables: variable persist between function calls

@ Applied to functions: function is not seen outside the
compilation unit

extern

@ Applied to variables: variable declared outside the function

@ Applied to functions: function defined in another compilation
unit

G. Agosta C Programming Review & Productivity Tools

Function Pointers
Data Types and Qualifiers
Variadic Functions

C Programming

Variadic Functions

Handling variable parameters in C

Defines the following macros:
@ va list : data type

@ void va_start (va_list args, last): initialize scanning,
starting from parameter /ast

@ void va_end(va_list args): end scanning
o type va_arg(va_list args, type): get next argument, casting
to type type

G. Agosta C Programming Review & Productivity Tools

(0]

Build Automation

Tools for Productivity in Programming Code oning
Debugging

© Tools for Productivity in Programming
@ Overview
@ Build Automation
@ Code Versioning
@ Debugging

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Tools for Productivity in Programming

Overview

e Compiling

@ Building
@ Versioning

@ Debugging

There are several solutions for each task!

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Tools for Productivity in Programming

Overview

@ Compiling: gcc, icc

@ Building: make, SCons, autoconf, CMake
@ Versioning: mercurial, git, svn, cvs

@ Debugging: gdb, idb

We focus on the GNU tools

G. Agosta C Programming Review & Productivity Tools

O

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Build Automation
GNU make

GNU make Basics
@ Variables

@ Rules

@ Patterns, wildcards and much more

Today, we will look at a few basics only!

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Build Automation
GNU make

Automatic Variables

$@ The file name of the target

$< The name of the first prerequisite

$? The names of all prerequisites newer than the target
$~ The names of all prerequisites

$+ Like above, but keeps duplicates

Variable definition

objects = *.0
objects := $(wildcard *.0)

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Build Automation
GNU make

Rules

%.0: %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -0 $©

gsort: gsort.c
gce -0 gsort gsort.c

Variable definition

@ Generic vs specific rules

@ Prefer specific to generic: shortest stem rule

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Versioning

Mercurial

A Quick Primer

create a repository hg init directory

copy a (remote) repository hg clone address

add files to repository hg add files

commit changes to changeset hg commit -m 'comment’

push changes to other repository hg push address
pull changes to other repository hg pull address
merge different history lines hg merge

G. Agosta C Programming Review & Productivity Tools

Overview

Build Automation
Tools for Productivity in Programming Code Versioning

Debugging

Debugging

GNU Debugger (gdb)

A Quick Primer

@ Compiling for debugging: -g flag

@ Setting arguments and running: set args, run
@ Multiple threads: info threads, thread n
°

Breakpoints: break at function, line or address, can be
conditional or thread-specific

e Continuing execution: continue (to next breakpoint), step
(to next source line), next (to next line in same stack frame)

@ Get info about the program: info

@ Examine the stack: bt, up, down

@ Examine data: print

G. Agosta C Programming Review & Productivity Tools

Conclusions

Concluding Remarks

What to do now?

@ Programming in C with dynamic libraries
o Write a dynamic library supporting a data type (e.g., lists or
trees)
o Use it in implementing a simple program (e.g., indexing

@ Setting up a code project
e Using versioning
o Creating makefiles

G. Agosta C Programming Review & Productivity Tools

	Preliminaries
	C Programming
	Function Pointers
	Data Types and Qualifiers
	Variadic Functions

	Tools for Productivity in Programming
	Overview
	Build Automation
	Code Versioning
	Debugging

	Conclusions

