Learning Goals

* Understand the internal structure of a real-world compiler
» Understand the effectiveness and limitations of code analysis and optimization techniques

* Be able to construct a full compiler for a toy language, generating assembly code for a RISC
architecture

There are less than 1.5 compiler construction expert for every /000 software engineers, but almost 2
jobs in compilers for every 100 in software engineering! (Data from LinkedIn, collected in 2012)

Where to find me.
Room & Time of lectures: we can change them if needed.

Introduction to Compiler Construction

* Why compiling? Compilers (performance, avoid writing fundamental code in asm) vs
interpreters (ease of deployment/portability). Performance in a cost model, performance as a
proxy of power consumption.

* When to compile? JIT, AOT and static compilers

* What to compile? Compilation units: from narrow (single-line or so) to expression to function-
scope to interprocedural to whole-program. Speed/resources vs optimization.

* Where to compile? Cross-compilation and split compilation; re-hosting vs re-targeting

* Issues: maintainance (debugging), portability, retargetability, support for multiple languages

* Overview of a compiler framework

* Lexical analysis & parsing (review): LL vs LR.
* LR: declarative style, express rules in a DSL
* LL: programming style, express rules as procedures
» Statement and Data Structure Lowering
* Lowering of loops: for — while — goto
* Optimization: machine independent and machine-dependent, language dependent vs
language independent
* Code Generation
* Reading: Compiler Construction

* Tools (C compilers):
« GCC
* Clang/LLVM
* Open64/ORC, Rose (source to source)
* icc, CoSy

Topics for the next lectures

Intermediate Representations

Semantic Analysis & Type Checking

Code Generation

Dataflow Optimization

Register Allocation

Parallelization and other optimization techniques
Introduction to LLVM

Projects with LLVM

Python Bindings + tests
Register Allocation in SSA
Identify pure functions

Simple alias analysis pass
Profile guided transformations
Improve OpenMP support
Partial redundancy elimination
Loop unrolling on machine code

def factor (symtab)
if accept('ident') : return Var (var=symtab.find(value),

symtab=symtab)

if accept('number') : return Const(value=value, symtab=symtab)

elif accept('lparen')
expr = expression|()
expect ('rparen')
return expr
else
error ("factor: syntax error")
getsym/()

def term(symtab)

op=None
expr = factor (symtab)
while new sym in ['times', 'slash']
getsym/()
op = sym
expr2 = factor (symtab)
expr = BinExpr (children=[op, expr, expr2], symtab=symtab)

return expr

def expression (symtab)

op=None
if new sym in ['plus' or 'minus']
getsym()
op = sym
expr = term(symtab)
if op : expr = UnExpr(children=[initial op, expr], symtab=symtab)
while new sym in ['plus' or 'minus']
getsym/()
op = sym
expr2 = term(symtab)

expr = BinExpr(children=[op, expr, expr2], symtab=symtab)

return expr

