
Learning Goals

• Understand the internal structure of a real-world compiler
• Understand the effectiveness and limitations of code analysis and optimization techniques
• Be able to construct a full compiler for a toy language, generating assembly code for a RISC

architecture

There are less than 1.5 compiler construction expert for every 1000 software engineers, but almost 2
jobs in compilers for every 100 in software engineering! (Data from LinkedIn, collected in 2012)

Where to find me.
Room & Time of lectures: we can change them if needed.

Introduction to Compiler Construction

• Why compiling? Compilers (performance, avoid writing fundamental code in asm) vs
interpreters (ease of deployment/portability). Performance in a cost model, performance as a
proxy of power consumption.

• When to compile? JIT, AOT and static compilers
• What to compile? Compilation units: from narrow (single-line or so) to expression to function-

scope to interprocedural to whole-program. Speed/resources vs optimization.
• Where to compile? Cross-compilation and split compilation; re-hosting vs re-targeting
• Issues: maintainance (debugging), portability, retargetability, support for multiple languages
• Overview of a compiler framework

• Lexical analysis & parsing (review): LL vs LR.
• LR: declarative style, express rules in a DSL
• LL: programming style, express rules as procedures

• Statement and Data Structure Lowering
• Lowering of loops: for → while → goto

• Optimization: machine independent and machine-dependent, language dependent vs
language independent

• Code Generation
• Reading: Compiler Construction

• Tools (C compilers):

• GCC

• Clang/LLVM

• Open64/ORC, Rose (source to source)

• icc, CoSy

Topics for the next lectures

Intermediate Representations
Semantic Analysis & Type Checking
Code Generation
Dataflow Optimization
Register Allocation
Parallelization and other optimization techniques
Introduction to LLVM

Projects with LLVM
Python Bindings + tests
Register Allocation in SSA
Identify pure functions
Simple alias analysis pass
Profile guided transformations
Improve OpenMP support
Partial redundancy elimination
Loop unrolling on machine code

def factor(symtab) :
if accept('ident') : return Var(var=symtab.find(value), symtab=symtab)
if accept('number') : return Const(value=value, symtab=symtab)
elif accept('lparen') :

expr = expression()
expect('rparen')
return expr

else :
error("factor: syntax error")
getsym()

def term(symtab) :

op=None
expr = factor(symtab)
while new_sym in ['times', 'slash'] :

getsym()
op = sym
expr2 = factor(symtab)
expr = BinExpr(children=[op, expr, expr2], symtab=symtab)

return expr

def expression(symtab) :

op=None
if new_sym in ['plus' or 'minus'] :

getsym()
op = sym

expr = term(symtab)
if op : expr = UnExpr(children=[initial_op, expr], symtab=symtab)
while new_sym in ['plus' or 'minus'] :

getsym()
op = sym
expr2 = term(symtab)
expr = BinExpr(children=[op, expr, expr2], symtab=symtab)

return expr

