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Syntax

“The study of the rules whereby words or other
elements of sentence structure are combined to form
grammatical sentences.”

The American Heritage Dictionary
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Syntactic Analysis I

Given an input text we need to determine its structure:

how statements are linked together

operator precedence rules

. . .

The structure is defined by mean of a grammar.
Syntactic analysis is performed over words:

the input is a tokenized stream

usually a lexical analyzer prepares input for the semantic
analysis
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Syntactic Analysis II

Structure of an algebraic expression

4 + 12 * 3

Lexical analysis

Number

4

Operator

+

Number

12

Operator

*

Number

3

Syntactic analysis

Operator

+

Number

4

Operator

*

Number

12

Number

3



Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Analysis

It is the evaluation of the meaning of each (terminal and
non-terminal) symbol, achieved by decorating the Abstract
Syntax Tree:

Syntactic analysis

Operator

+

Number

4

Operator

*

Number

12

Number

3

Semantic analysis

Value 40

Operator

+

Value 4

Operator

4

Value 36

Operator

*

Value 12

Number

12

Value 3

Number

3
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Parsing

A parser is a program that performs syntactic analysis.
Typically:

LL descending parsing, can be constructed by hand
(c-parser.c in GCC sources) or automatically
(ANTLR Java parsers generator)

LR ascending parsing, usually too complex to be
constructed manually

Common duty: building the Abstract Syntax Tree.
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bison

The standard tool to generate LR parsers is bison:

free implementation of yacc

strongly coupled with flex

actually a LALR(1) parser generator

Getting bison

Available in your distribution repositories:

Debian aptitude install bison

Fedora yum install bison
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Parser Building

A parser consume tokens:

a scanner must produces tokens

natural choice is flex

Using bison and flex together

Scanner description (.lex or .l) Parser description (.y)

flex bison

Scanner C source Parser C source

gcc

Input stream Scanner executable Output
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A Simple Example

Let’s try to build a reverse polish notation calculator.

Grammar

S → E |ε
E → NUMBER
E → EE + |EE∗

Don’t worry about terminals:

it is a scanner duty
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The bison Input File

The bison input file resemble the one of flex:

C definitions header
inclusions, var
declarations,
. . .

definitions tokens,
precedences,
. . .

grammar rules rules and
semantic
actions

user code main and
service
functions

bison input file a

%{
/* C definitions */

%}
/* Definitions */

%%
/* Grammar rules */

%%
/* User code */

aC89-style comments can
appear in any of the sections.
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Do You Remember flex? I

We must provide a scanner to bison:

just implement the yylex function

maybe better to exploit flex

scanner.l global section

%option noyywrap
%{
#include "rpn.tab.h"
#define UNKNOWN -1
%}
DIGIT [0-9]
BLANK [ \n\r\t]
%%
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Do You Remember flex? II

scanner.l rules section

{BLANK}
{DIGIT}+ { return NUMBER; }
"+" { return OP_PLUS; }
"*" { return OP_MUL; }
. {

yyerror("Unknown char");
return UNKNOWN;

}

There is no need to add extra C code:

flex is only used to tokenize the input
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Parser Definition I

Let’s start with a parser that recognize reverse polish notation
expressions:

rpn.y definitions section

%{
#include <stdio.h>
%}
%token NUMBER
%token OP_PLUS
%token OP_MUL
%%

The %token directive allows to define words read by the parser.
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Parser Definition II

Syntax for grammar definition is straightforward:

rpn.y grammar section

calculus: /* Empty */

| expression
;

expression: NUMBER
| expression expression OP_PLUS
| expression expression OP_MUL
;

%%
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Parser Definition III

The last section contains:

the error handling function yyerror

the program entry point main

rpn.y C code

int yyerror(char* msg) {
printf("%s\n", msg);
return 0;

}

int main(int argc , char* argv []) {
return yyparse ();

}
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Compiling sources I

From the parser (rpn.y file) we build:

the parser itself (rpn.tab.c)

a description of tokens (rpn.tab.h)

Parser and scanner generation

$ bison -d rpn.y
$ flex scanner.l
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Compiling sources II

To get the final executable compile and link:

Get your own polish parser

$ gcc rpn.tab.c lex.yy.c

I am lazy:

Using make 1

YFLAGS=-d
rpn: rpn.o scanner.o
clean:

rm -f rpn y.tab.h *.o

1Filenames are slightly different.
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Adding semantic I

Beside each rule it is possible to add a code-block performing a
semantic action:

the semantic action is executed in the context of the
associated rule

Rules full syntax

lhs: rhs_1 { ... }
| rhs_2 { ... } rhs_3 { ... }

The lhs rule is an alternative:

each alternative is independent from the other

the first contains a semantic action

the second contains two semantic actions
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Adding semantic II

Semantic actions are executed just after the preceding rule.
Given:

lhs: rhs { ... }

The parser:

1 recognizes rhs

2 executes the semantic action

3 recognizes lhs

The action is placed at rule tail:

it is executed every time lhs is recognized
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Adding semantic III

Given:

lhs: rhs1 { ... } rhs2 { ... }

The parser:

1 recognizes rhs1

2 executes the first semantic action

3 recognizes rhs2

4 executes the second semantic action

5 recognizes lhs

Semantic actions not at the tail of a rule are called actions in
the middle.
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Adding semantic IV

This is a logical view of semantic action execution:

the execution of semantic actions can be postponed due
to ambiguity
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Semantic Values I

A variable is associated to every symbol:

an int by default

no distinction between terminal and non-terminal

type customizable via %union directive 2

Inside actions is possible to use these vars:

accessed throuh $n notation

index are 1-based

the left-hand side semantic variable is $$

counting includes semantic actions
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Semantic Values II

Variables enumeration

Given:

lhs: rhs1 { ... } rhs2 { ... }

We have:

Component Variable

lhs $$
rhs1 $1

{ ... } $2
rhs2 $3

{ ... } $4
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Semantic Values III

Obviously inside a semantic action we can access only variables
associated to preceeding rules:

rhs-vars mostly accessed in read-mode 3

With an exception: the $$ variable:

it is a synthesized attribute

always written

available only in the semantic action 4

Default semantic action:

{ $$ = $1; }

2More on this on next lesson.
3LALR parsing is bottom-up.
4The code block at rule tail.
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Add and Multiply I

We must assign a semantic value to terminals:

scanner.l scanning naturals

{DIGIT}+ {
yylval = atoi(yytext );
return NUMBER;

}

The yylval variable is declared by bison:

must be filled with the semantic value of the terminal
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Add and Multiply II

Sums and products must be performed by the parser:

rpn.y computing actions

expression:
NUMBER { $$ = $1; }
| expression expression OP_PLUS {

$$ = $1 + $2;
}

| expression expression OP_MUL {
$$ = $1 * $2;

}
;

%%
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Add and Multiply III

At last print the expression evaluation:

rpn.y reporting action

calculus:
/* Empty */

| expression {
printf("Result: %d\n", $1);

}
;
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Ambiguity I

Consider the grammar of infix expressions:

Grammar

S → E |ε
E → NUMBER
E → E + E |E ∗ E

It has a big problem: it is ambiguous!
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Ambiguity II

Let’s try to generate 2 ∗ 2 + 2:

Produce + first
+

2 ∗

2 2

Produce ∗ first
∗

2 +

2 2

The grammar ambiguity between + and ∗ rules generates a
semantic ambiguity:

what are the + and ∗ precedences?
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How To Resolve Ambiguity I

From theory, we can rewrite the grammar in a non ambiguous
form:

Unambiguous grammar

S → E |ε
E → E + T |T
T → NUMBER
T → T ∗ NUMBER

Unique tree
+

2 ∗

2 2



Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

How To Resolve Ambiguity II

Since token are the same, we build only the parser:

infix.y rules 5

expression:
term { $$ = $1; }
| expression OP_PLUS term {

$$ = $1 + $3;
}

term:
NUMBER { $$ = $1; }
| term OP_MUL NUMBER {

$$ = $1 * $3;
}

5Scaffolding is unchanged.
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Precedence

Another way to handle operator precedence is to tell bison the
precedence relation:

Precedence with bison a

%left TOKEN_1 TOKEN_2
%left TOKEN_3

aPrecedences declared inside
definitions section.

TOKEN_1 and
TOKEN_2 have the
same precedence

both have lower
precedence than
TOKEN_3
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Associativity I

An operator ⊕ can be:

left-associative a⊕ b ⊕ c = (a⊕ b)⊕ c

right-associative a⊕ b ⊕ c = a⊕ (b ⊕ c)

Associativity reflects on parsing:

AST of left-associative ⊕
⊕

⊕

a b

c

AST of right-associative ⊕
⊕

a ⊕

b c
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Associativity II

Inside a bison file it is possible to declare the associativity of
operators:

operators are tokens

bison directives for operators associativity

Syntax Meaning

%left TOKEN TOKEN is left-associative
%right TOKEN TOKEN is right-associative
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Ambiguous Infix Calculator I

Declaring operator precedences allows to write ambiguous rules:

infix-ambiguous.y rules

expression:
NUMBER { $$ = $1; }
| expression OP_PLUS expression {

$$ = $1 + $3;
}
| expression OP_MUL expression {

$$ = $1 * $3;
}
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Ambiguous Infix Calculator II

Disambiguation is performed by bison consulting operator
precedences:

Unambiguous tokens

%token NUMBER
%token OP_PLUS
%token OP_MUL

Ambiguous tokens

%token NUMBER
%left OP_PLUS
%left OP_MUL
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Context-dependent Precedence I

Sometimes a character has a dual meaning:

the - identifies both subtraction and unary minus

First of all, let’s modify the infix scanner to recognize -:

infix-scanner.l minus token

"-" { return OP_MINUS; }
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Context-dependent Precedence II

In the parser we introduce:

the subtraction token OP_MINUS

the unary minus OP_UNARY_MINUS

The latter is a fake token used to declare a precedence.

infix-minus.y minus token

%token NUMBER
%left OP_PLUS OP_MINUS
%left OP_MUL
%left OP_UNARY_MINUS
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Context-dependent Precedence III

In the rules section we can force the right precedence:

infix-minus.y minus rules

expression:
...
| expression OP_MINUS expression {

$$ = $1 - $3;
}

...
| OP_MINUS expression

%prec OP_UNARY_MINUS {
$$ = -$2;

}
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Parse-First

Using bison requires both:

writing the grammar

adding semantic actions

Write the grammar first!

try some examples

if they are recognized, add semantic actions
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Simple Grammars

As in coding, follow some conventions while writing grammars:

terminals (tokens) are uppercase

not-terminals are lowercase

. . .

This keeps the grammar readable!
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