
Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Linear ACSE

Ettore Speziale

Politecnico di Milano

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Contents

1 Introduction

2 Assignment

3 Expression
Arithmetic
Comparison

4 Bibliography

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Contents

1 Introduction

2 Assignment

3 Expression
Arithmetic
Comparison

4 Bibliography

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Work-flow

The LANCE files are a list of statements:

see Acse.y

We have just seen a simple statement:

the write statement

It is linear:

no conditional

translation depends only on write itself

Today we will see something close:

assignments

expressions

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Interlude

Before going forward:

how is it possible to generate instructions?

An helper function is associated to every instruction:

it allows to emit the instruction hiding low level details

see axe gencode.h

Generating instructions

Instruction Helper

ADD gen_add_instruction
ADDI gen_addi_instruction
READ gen_read_instruction
BEQ gen_beq_instruction

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Contents

1 Introduction

2 Assignment

3 Expression
Arithmetic
Comparison

4 Bibliography

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

A Complete Statement

Consider the simple assignment a = 4:

we want to copy 4 inside a

we need both a (left-hand side) and 4 (right-hand side)

When do we known all the data needed?

when the parser recognize the assign_statement rule

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Generalized Assignment I

Think at left-hand sides:

scalar stored in a register

array cell stored somewhere in the memory

Moreover:

they have different syntax

And right-hand sides:

just something evaluable to a scalar

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Generalized Assignment II

Left-hand sides are too different:

the rule must be specialized

Right-hand side are equal:

should be factorized through the exp rule

Now, better to switch to code:

look at the assign_statement rule in Acse.y

scalars are stored into registers and manually handled 1

arrays are managed exploiting a function from
axe array.h

1The if is explained later.

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Contents

1 Introduction

2 Assignment

3 Expression
Arithmetic
Comparison

4 Bibliography

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

The Need to Type

Most of ACSE code deals with expressions:

assignments

arrays indexing

conditionals

The exp has been typed to generalize expressions management:

Expression type 2

typedef struct t_axe_expression {
int value;
int expression_type;

} t_axe_expression;

2See axe struct.h.

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Building Expressions

The expression framework:

allows to combine expressions together

generates code to compute expressions

described in axe expressions.h

They are built recursively:

two base cases: IMMEDIATE and REGISTER expressions

intermediate values kept into REGISTER expressions

create expression allows to build base expressions

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Expression Values

The expression value is stored into the value field:

immediate the value of the immediate

register the register storing that expression

Un-boxing expressions

if($3.expression_type == IMMEDIATE)
gen_addi_instruction (..., $3.value);

else
gen_add_instruction (..., $3.value ,

CG_DIRECT_ALL);

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Add

Very simple expressions:

Adding two expressions

exp:
...

| exp AND_OP exp {
$$ = handle_bin_numeric_op(program ,

$1,
$3,
ANDB);

}
...

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Lesser Than

Relational operators handled with expressions too:

Comparing two expressions

exp:
...

| exp LT exp {
$$ = handle_binary_comparison(

program , $1 , $3 , _LT_);
}

...

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Contents

1 Introduction

2 Assignment

3 Expression
Arithmetic
Comparison

4 Bibliography

Linear ACSE

Ettore
Speziale

Introduction

Assignment

Expression

Arithmetic

Comparison

Bibliography

Bibliography

A. Di Biagio and G. Agosta.
Advanced Compiler System for Education.
http://compilergroup.elet.polimi.it, 2008.

Formal Languages and Compilers Group.
Software Compilers.
http://compilergroup.elet.polimi.it, 2010.

	Introduction
	Assignment
	Expression
	Arithmetic
	Comparison

	Bibliography

