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Work-flow

The LANCE files are a list of statements:

see Acse.y

We have just seen a simple statement:

the write statement

It is linear:

no conditional

translation depends only on write itself

Today we will see something close:

assignments

expressions
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Interlude

Before going forward:

how is it possible to generate instructions?

An helper function is associated to every instruction:

it allows to emit the instruction hiding low level details

see axe gencode.h

Generating instructions

Instruction Helper

ADD gen_add_instruction
ADDI gen_addi_instruction
READ gen_read_instruction
BEQ gen_beq_instruction
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A Complete Statement

Consider the simple assignment a = 4:

we want to copy 4 inside a

we need both a (left-hand side) and 4 (right-hand side)

When do we known all the data needed?

when the parser recognize the assign_statement rule
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Generalized Assignment I

Think at left-hand sides:

scalar stored in a register

array cell stored somewhere in the memory

Moreover:

they have different syntax

And right-hand sides:

just something evaluable to a scalar
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Generalized Assignment II

Left-hand sides are too different:

the rule must be specialized

Right-hand side are equal:

should be factorized through the exp rule

Now, better to switch to code:

look at the assign_statement rule in Acse.y

scalars are stored into registers and manually handled 1

arrays are managed exploiting a function from
axe array.h

1The if is explained later.
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The Need to Type

Most of ACSE code deals with expressions:

assignments

arrays indexing

conditionals

The exp has been typed to generalize expressions management:

Expression type 2

typedef struct t_axe_expression {
int value;
int expression_type;

} t_axe_expression;

2See axe struct.h.
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Building Expressions

The expression framework:

allows to combine expressions together

generates code to compute expressions

described in axe expressions.h

They are built recursively:

two base cases: IMMEDIATE and REGISTER expressions

intermediate values kept into REGISTER expressions

create expression allows to build base expressions
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Expression Values

The expression value is stored into the value field:

immediate the value of the immediate

register the register storing that expression

Un-boxing expressions

if($3.expression_type == IMMEDIATE)
gen_addi_instruction (..., $3.value);

else
gen_add_instruction (..., $3.value ,

CG_DIRECT_ALL );
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Add

Very simple expressions:

Adding two expressions

exp:
...

| exp AND_OP exp {
$$ = handle_bin_numeric_op(program ,

$1,
$3,
ANDB);

}
...
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Lesser Than

Relational operators handled with expressions too:

Comparing two expressions

exp:
...

| exp LT exp {
$$ = handle_binary_comparison(

program , $1 , $3 , _LT_);
}

...
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