
Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Analysis

Ettore Speziale

Politecnico di Milano

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Contents

1 Introduction

2 The bison Parser Generator
Reverse Polish Notation Calculator
Infix Notation Calculator
Operator-related Stuffs

3 Advice

4 Bibliography

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Contents

1 Introduction

2 The bison Parser Generator
Reverse Polish Notation Calculator
Infix Notation Calculator
Operator-related Stuffs

3 Advice

4 Bibliography

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Syntax

“The study of the rules whereby words or other
elements of sentence structure are combined to form
grammatical sentences.”

The American Heritage Dictionary

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Syntactic Analysis I

Given an input text we need to determine its structure:

how statements are linked together

operator precedence rules

. . .

The structure is defined by mean of a grammar.
Syntactic analysis is performed over words:

the input is a tokenized stream

usually a lexical analyzer prepares input for the semantic
analysis

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Syntactic Analysis II

Structure of an algebraic expression

4 + 12 * 3

Lexical analysis

Number

4

Operator

+

Number

12

Operator

*

Number

3

Syntactic analysis

Operator

+

Number

4

Operator

*

Number

12

Number

3

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Analysis

It is the evaluation of the meaning of each (terminal and
non-terminal) symbol, achieved by decorating the Abstract
Syntax Tree:

Syntactic analysis

Operator

+

Number

4

Operator

*

Number

12

Number

3

Semantic analysis

Value 40

Operator

+

Value 4

Operator

4

Value 36

Operator

*

Value 12

Number

12

Value 3

Number

3

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Contents

1 Introduction

2 The bison Parser Generator
Reverse Polish Notation Calculator
Infix Notation Calculator
Operator-related Stuffs

3 Advice

4 Bibliography

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parsing

A parser is a program that performs syntactic analysis.
Typically:

LL descending parsing, can be constructed by hand
(c-parser.c in GCC sources) or automatically
(ANTLR Java parsers generator)

LR ascending parsing, usually too complex to be
constructed manually

Common duty: building the Abstract Syntax Tree.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

bison

The standard tool to generate LR parsers is bison:

free implementation of yacc

strongly coupled with flex

actually a LALR(1) parser generator

Getting bison

Available in your distribution repositories:

Debian aptitude install bison

Fedora yum install bison

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parser Building

A parser consume tokens:

a scanner must produces tokens

natural choice is flex

Using bison and flex together

Scanner description (.lex or .l) Parser description (.y)

flex bison

Scanner C source Parser C source

gcc

Input stream Scanner executable Output

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

A Simple Example

Let’s try to build a reverse polish notation calculator.

Grammar

S → E |ε
E → NUMBER
E → EE + |EE∗

Don’t worry about terminals:

it is a scanner duty

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

The bison Input File

The bison input file resemble the one of flex:

C definitions header
inclusions, var
declarations,
. . .

definitions tokens,
precedences,
. . .

grammar rules rules and
semantic
actions

user code main and
service
functions

bison input file a

%{
/* C definitions */

%}
/* Definitions */

%%
/* Grammar rules */

%%
/* User code */

aC89-style comments can
appear in any of the sections.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Do You Remember flex? I

We must provide a scanner to bison:

just implement the yylex function

maybe better to exploit flex

scanner.l global section

%option noyywrap
%{
#include "rpn.tab.h"
#define UNKNOWN -1
%}
DIGIT [0-9]
BLANK [\n\r\t]
%%

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Do You Remember flex? II

scanner.l rules section

{BLANK}
{DIGIT}+ { return NUMBER; }
"+" { return OP_PLUS; }
"*" { return OP_MUL; }
. {

yyerror("Unknown char");
return UNKNOWN;

}

There is no need to add extra C code:

flex is only used to tokenize the input

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parser Definition I

Let’s start with a parser that recognize reverse polish notation
expressions:

rpn.y definitions section

%{
#include <stdio.h>
%}
%token NUMBER
%token OP_PLUS
%token OP_MUL
%%

The %token directive allows to define words read by the parser.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parser Definition II

Syntax for grammar definition is straightforward:

rpn.y grammar section

calculus: /* Empty */

| expression
;

expression: NUMBER
| expression expression OP_PLUS
| expression expression OP_MUL
;

%%

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parser Definition III

The last section contains:

the error handling function yyerror

the program entry point main

rpn.y C code

int yyerror(char* msg) {
printf("%s\n", msg);
return 0;

}

int main(int argc , char* argv []) {
return yyparse ();

}

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Compiling sources I

From the parser (rpn.y file) we build:

the parser itself (rpn.tab.c)

a description of tokens (rpn.tab.h)

Parser and scanner generation

$ bison -d rpn.y
$ flex scanner.l

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Compiling sources II

To get the final executable compile and link:

Get your own polish parser

$ gcc rpn.tab.c lex.yy.c

I am lazy:

Using make 1

YFLAGS=-d
rpn: rpn.o scanner.o
clean:

rm -f rpn y.tab.h *.o

1Filenames are slightly different.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Adding semantic I

Beside each rule it is possible to add a code-block performing a
semantic action:

the semantic action is executed in the context of the
associated rule

Rules full syntax

lhs: rhs_1 { ... }
| rhs_2 { ... } rhs_3 { ... }

The lhs rule is an alternative:

each alternative is independent from the other

the first contains a semantic action

the second contains two semantic actions

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Adding semantic II

Semantic actions are executed just after the preceding rule.
Given:

lhs: rhs { ... }

The parser:

1 recognizes rhs

2 executes the semantic action

3 recognizes lhs

The action is placed at rule tail:

it is executed every time lhs is recognized

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Adding semantic III

Given:

lhs: rhs1 { ... } rhs2 { ... }

The parser:

1 recognizes rhs1

2 executes the first semantic action

3 recognizes rhs2

4 executes the second semantic action

5 recognizes lhs

Semantic actions not at the tail of a rule are called actions in
the middle.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Adding semantic IV

This is a logical view of semantic action execution:

the execution of semantic actions can be postponed due
to ambiguity

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Values I

A variable is associated to every symbol:

an int by default

no distinction between terminal and non-terminal

type customizable via %union directive 2

Inside actions is possible to use these vars:

accessed throuh $n notation

index are 1-based

the left-hand side semantic variable is $$

counting includes semantic actions

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Values II

Variables enumeration

Given:

lhs: rhs1 { ... } rhs2 { ... }

We have:

Component Variable

lhs $$
rhs1 $1

{ ... } $2
rhs2 $3

{ ... } $4

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Semantic Values III

Obviously inside a semantic action we can access only variables
associated to preceeding rules:

rhs-vars mostly accessed in read-mode 3

With an exception: the $$ variable:

it is a synthesized attribute

always written

available only in the semantic action 4

Default semantic action:

{ $$ = $1; }

2More on this on next lesson.
3LALR parsing is bottom-up.
4The code block at rule tail.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Add and Multiply I

We must assign a semantic value to terminals:

scanner.l scanning naturals

{DIGIT}+ {
yylval = atoi(yytext);
return NUMBER;

}

The yylval variable is declared by bison:

must be filled with the semantic value of the terminal

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Add and Multiply II

Sums and products must be performed by the parser:

rpn.y computing actions

expression:
NUMBER { $$ = $1; }
| expression expression OP_PLUS {

$$ = $1 + $2;
}

| expression expression OP_MUL {
$$ = $1 * $2;

}
;

%%

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Add and Multiply III

At last print the expression evaluation:

rpn.y reporting action

calculus:
/* Empty */

| expression {
printf("Result: %d\n", $1);

}
;

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Ambiguity I

Consider the grammar of infix expressions:

Grammar

S → E |ε
E → NUMBER
E → E + E |E ∗ E

It has a big problem: it is ambiguous!

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Ambiguity II

Let’s try to generate 2 ∗ 2 + 2:

Produce + first
+

2 ∗

2 2

Produce ∗ first
∗

2 +

2 2

The grammar ambiguity between + and ∗ rules generates a
semantic ambiguity:

what are the + and ∗ precedences?

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

How To Resolve Ambiguity I

From theory, we can rewrite the grammar in a non ambiguous
form:

Unambiguous grammar

S → E |ε
E → E + T |T
T → NUMBER
T → T ∗ NUMBER

Unique tree
+

2 ∗

2 2

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

How To Resolve Ambiguity II

Since token are the same, we build only the parser:

infix.y rules 5

expression:
term { $$ = $1; }
| expression OP_PLUS term {

$$ = $1 + $3;
}

term:
NUMBER { $$ = $1; }
| term OP_MUL NUMBER {

$$ = $1 * $3;
}

5Scaffolding is unchanged.

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Precedence

Another way to handle operator precedence is to tell bison the
precedence relation:

Precedence with bison a

%left TOKEN_1 TOKEN_2
%left TOKEN_3

aPrecedences declared inside
definitions section.

TOKEN_1 and
TOKEN_2 have the
same precedence

both have lower
precedence than
TOKEN_3

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Associativity I

An operator ⊕ can be:

left-associative a⊕ b ⊕ c = (a⊕ b)⊕ c

right-associative a⊕ b ⊕ c = a⊕ (b ⊕ c)

Associativity reflects on parsing:

AST of left-associative ⊕
⊕

⊕

a b

c

AST of right-associative ⊕
⊕

a ⊕

b c

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Associativity II

Inside a bison file it is possible to declare the associativity of
operators:

operators are tokens

bison directives for operators associativity

Syntax Meaning

%left TOKEN TOKEN is left-associative
%right TOKEN TOKEN is right-associative

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Ambiguous Infix Calculator I

Declaring operator precedences allows to write ambiguous rules:

infix-ambiguous.y rules

expression:
NUMBER { $$ = $1; }
| expression OP_PLUS expression {

$$ = $1 + $3;
}
| expression OP_MUL expression {

$$ = $1 * $3;
}

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Ambiguous Infix Calculator II

Disambiguation is performed by bison consulting operator
precedences:

Unambiguous tokens

%token NUMBER
%token OP_PLUS
%token OP_MUL

Ambiguous tokens

%token NUMBER
%left OP_PLUS
%left OP_MUL

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Context-dependent Precedence I

Sometimes a character has a dual meaning:

the - identifies both subtraction and unary minus

First of all, let’s modify the infix scanner to recognize -:

infix-scanner.l minus token

"-" { return OP_MINUS; }

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Context-dependent Precedence II

In the parser we introduce:

the subtraction token OP_MINUS

the unary minus OP_UNARY_MINUS

The latter is a fake token used to declare a precedence.

infix-minus.y minus token

%token NUMBER
%left OP_PLUS OP_MINUS
%left OP_MUL
%left OP_UNARY_MINUS

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Context-dependent Precedence III

In the rules section we can force the right precedence:

infix-minus.y minus rules

expression:
...
| expression OP_MINUS expression {

$$ = $1 - $3;
}

...
| OP_MINUS expression

%prec OP_UNARY_MINUS {
$$ = -$2;

}

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Contents

1 Introduction

2 The bison Parser Generator
Reverse Polish Notation Calculator
Infix Notation Calculator
Operator-related Stuffs

3 Advice

4 Bibliography

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Parse-First

Using bison requires both:

writing the grammar

adding semantic actions

Write the grammar first!

try some examples

if they are recognized, add semantic actions

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Simple Grammars

As in coding, follow some conventions while writing grammars:

terminals (tokens) are uppercase

not-terminals are lowercase

. . .

This keeps the grammar readable!

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Contents

1 Introduction

2 The bison Parser Generator
Reverse Polish Notation Calculator
Infix Notation Calculator
Operator-related Stuffs

3 Advice

4 Bibliography

Semantic
Analysis

Ettore
Speziale

Introduction

The bison

Parser
Generator

Reverse Polish
Notation
Calculator

Infix Notation
Calculator

Operator-related
Stuffs

Advice

Bibliography

Bibliography

GNU.
GNU bison Info Pages.
info bison, 2006.

Formal Languages and Compilers Group.
Software Compilers.
http://compilergroup.elet.polimi.it, 2010.

	Introduction
	The bison Parser Generator
	Reverse Polish Notation Calculator
	Infix Notation Calculator
	Operator-related Stuffs

	Advice
	Bibliography

