
ALaRI
Software Compilers

CODE GENERATION FOR MIPS INSTRUCTION
SET USING THE ACSE COMPILER

Tutor: Giovanni Agosta

Project Authors:
Luis Gabriel Murillo
Ricardo Andres Velasquez

A.A. 2008

CONTENTS

Contents

1 Introduction 5

2 MIPS Architecture 6
2.1 CPU Registers . 6
2.2 Addressing Modes . 8
2.3 Instructions . 8
2.4 System Calls . 9

3 Back-End Modifications 10
3.1 ternary instructions . 11
3.2 binary immediate instructions 13
3.3 binary instructions . 13
3.4 unary immediate instructions 14
3.5 unary instructions . 14
3.6 binary jump instructions . 14
3.7 unary jump instructions . 15
3.8 unconditionally jump . 15
3.9 load/store instructions . 16
3.10 special instructions . 16

4 Front-End Modifications 17
4.1 Switch . 17
4.2 Continue and Break . 18

2

LIST OF FIGURES

List of Figures

1 Syscalls used in ACSE to generate MIPS assembler 9
2 Grammar Rules for Switch . 17

3

LIST OF TABLES

List of Tables

1 CPU Registers in MIPS Architecture 7
2 Addressing Modes in MIPS 8
3 Syscalls implemented in ACSE 10

4

1 INTRODUCTION

1 Introduction

The Advanced Compiler System for Education (ACSE) is a compiler designed
to translate source code written in LanCE language into an assembler code
for the MACE architecture. Even though the ACSE is a simple compiler,
it provides all the elements to perfectly understand how a compiler works,
since it is able to perform actions such as create a control flow graph, execute
a liveness analysis and make a register allocation.

Due to the fact that the ACSE is hardly restricted to generate code for
the MACE architecture, this project aims to create a modified core for the
ACSE compiler, which will allow to generate working MIPS assembler code,
suitable to execute in the SPIM simulator. Modifications mainly in the Back-
end have been made to reach the goal, but some other modifications in the
Front-end were used to extend the initial grammar supported by the parser,
and allow the insertion of the Switch structure and the Break and Continue
statements. This report briefly describes first some hints of the MIPS Ar-
chitecture, then the changes made to the ACSE compiler’s back-end and
front-end, and finally the results obtained with the new compiler.

5

2 MIPS ARCHITECTURE

2 MIPS Architecture

The architecture of the MIPS computers is simple and regular, which makes
it easy to learn and understand. The processor contains 32 general-purpose
registers and a well-designed instruction set that make it a propitious target
for generating code in a compiler. The implemented version of the instruction
set in this project is MIPS R2000/R3000, supported by SPIM v6.5 simulator.
In this section we present some particular hints needed to implement the
MIPS code generation inside the ACSE compiler.

2.1 CPU Registers

The MIPS central processing unit contains 32 general purpose registers that
are numbered from 0 to 31. Each register is designated by $n. Register $0
always contains the hardwired value 0. MIPS has established a set of conven-
tions as to how registers should be used. These suggestions are guidelines,
which are not enforced by the hardware. However a program that violates
them will not work properly with other software. Table 1 lists the registers
and describes their intended use. Registers $at (1), $k0 (26), and $k1 (27)
are reserved for use by the assembler and operating system. Registers $a0
to $a3 (4 to 7) are used to pass the first four arguments to routines (remain-
ing arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are
used to return values from functions. Registers $t0 to $t9 (8 to 15, 24, 25)
are caller-saved registers used for temporary quantities that do not need to
be preserved across calls. Registers $s0 to $s7 (16 to 23) are callee- saved
registers that hold long-lived values that should be preserved across calls.
Register $sp (29) is the stack pointer, which points to the last location in
use on the stack. Register $fp (30) is the frame pointer. Register $ra (31)
is written with the return address for a call by the jal instruction. Register
$gp (28) is a global pointer that points into the middle of a 64K block of
memory in the heap that holds constants and global variables. The objects
in this heap can be quickly accessed with a single load or store instruction.

If we compare the previous registers with the registers in MACE architec-
ture, is noticeable that, in order to produce a good assembler for MIPS, a
change in the way the registers are allocated by ACSE is needed, since in
MACE’s assembler you can use any register between R1 and R31 to perform
the normal operations, while to build the MIPS assembler is necessary to use
only the registers $zero, $t0 to $t9 and $s0 to $s7. The registers $v0 to $v2
are used in the Read and Write operations, as we will show later.

6

2 MIPS ARCHITECTURE

Register Name Number Usage

$zero 0 Constant 0
$at 1 Reserved
$v0 2 Return from a function
$v1 3 Return from a function
$a0 4 Argument 1
$a1 5 Argument 2
$a2 6 Argument 3
$a3 7 Argument 4
$t0 8 Temporary
$t1 9 Temporary
$t2 10 Temporary
$t3 11 Temporary
$t4 12 Temporary
$t5 13 Temporary
$t6 14 Temporary
$t7 15 Temporary
$s0 16 Saved Temporary
$s1 17 Saved Temporary
$s2 18 Saved Temporary
$s3 19 Saved Temporary
$s4 20 Saved Temporary
$s5 21 Saved Temporary
$s6 22 Saved Temporary
$s7 23 Saved Temporary
$t8 24 Temporary
$t9 25 Temporary
$k0 26 Reserved for OS Kernel
$k1 27 Reserved for OS Kernel
$gp 28 Global area pointer
$sp 29 Stack pointer
$fp 30 Frame pointer
$ra 31 Return Address

Table 1: CPU Registers in MIPS Architecture

7

2 MIPS ARCHITECTURE

2.2 Addressing Modes

MIPS is a load store architecture, which means that only load and store in-
structions access memory. Computation instructions operate only on values
in registers. The bare machine provides only one memory addressing mode:
c(rx), which uses the sum of the immediate (integer) c and the contents of
register rx as the address. The addressing modes provided by the virtual
machine for load and store instructions are shown in Table 2.

For giving the ACSE capability to generate MIPS assembler, was necessary
to modify all the structure of the axe gencode.c file, aiming to re-organize
the instruction generation. One of the facts that motivated such change was
the differences between the addressing modes in MACE and the addressing
modes in MIPS, because for example in MACE is possible to access the mem-
ory in an indirect way using the ternary instructions (three operands), while
in MIPS is only possible with the load and store instructions which have not
ternary structure.

Format Address Computation

register Contents of Register
imm Immediate
imm(register) Contents of Register + Immediate
symbol Address of Symbol
symbol +/- imm Address of Symbol + or - Immediate
symbol +/- imm(register) Address of Symbol + or - (Cont. Register + Imm)

Table 2: Addressing Modes in MIPS

2.3 Instructions

The MIPS R2000/R3000 assembler has a big number of instructions, grouped
in the categories shown below. Although not all the different kinds of instruc-
tions are needed to translate the LanCE language, almost all the instructions
between the IS were implemented inside the ACSE core. Only the Floating
Point Instruction weren’t implemented.

• Arithmetical and Logical Instructions

• Constant-Manipulating Instructions

• Branch Instructions

• Jump Instructions

8

2 MIPS ARCHITECTURE

• Trap Instructions

• Load Instructions

• Store Instructions

• Data Movement Instructions

• Floating Point Instructions

• Exception and Interrupt Instructions

Each group of instructions has different formats, going from unary in-
structions to ternary instructions, like in ACSE original assembler, but the
format of the MIPS doesn’t match this assembler. For example, big changes
to the branch instructions should be made.

2.4 System Calls

The System Calls are a small set of services provided by the SPIM simulator.
Although this services are not included inside the original MIPS instruction
set, they are very useful when the assembler code is going to be tested, be-
cause using them we can read an input or write an output to the console.
Implementing the syscalls is possible to translate the READ and WRITE
instructions provided inside the LanCE grammar. To request a service us-
ing syscall, the service code should be written to the $v0 register, and the
arguments to the $a0 to $a3 registers, thus replacing the way in which the
READ and WRITE instructions were previously generated for MACE. The
available services in the SPIM simulator are used to read and write different
types of data, such as integers, floats, doubles and strings, but according to
the requirements of LanCE language just the services for integer manipula-
tion were needed. Table 3 shows the syscalls implemented inside the ACSE,
to accomplish the LanCE requirements. In Figure 1 we show a code example
of how a syscall is implemented.

Figure 1: Syscalls used in ACSE to generate MIPS assembler

9

3 BACK-END MODIFICATIONS

3 Back-End Modifications

Due to the fact that the instructions in MIPS assembler significantly differ
from those in the MACE assembler, was necessary to make a lot of changes
in the components of the back-end, such as axe gencode, axe cflow graph,
axe transform, axe expressions, axe engine, axe array and axe constants.

Basically, the work involved to remove incompatible instructions, change
the name to some other instructions, add some new useful instructions, and
modify the addressing modes in others. All this in order to obtain a right
assembly code for MIPS architecture. Addressing modes changes in some
instructions (mainly branch instructions) have implied several changes also
in the front end.

The most significative changes were made inside the gencode file, where we
almost reconstructed again the entire module. The initial funtions to build
unary, binary, ternary and jump instructios were replaced according to the
needs of the MIPS instructions. Such instructions were clasified into the
following groups, and one function per group was built in the mentioned file.

• ternary instructions

• binary immediate instructions

• binary instructions

• unary immediate instructions

• unary instructions

• load/store instructions

• ternary branch instructions

• binary JUMP instructions

• unary jump instructions

• unconditionally jump

Service System call code (in $v0) Argument Result

print int 1 integer in $a0
read int 5 integer in $v0

Table 3: Syscalls implemented in ACSE

10

3 BACK-END MODIFICATIONS

• special instructions

The subgroups represent the whole set of instructions for MIPS R2000/R3000
(excuding FP instructions), and in the following subsections we explain in
detail all the MIPS instructions that our back-end is able to generate, and
the technique we implemented to generate it taking as beginning the ACSE
core.

3.1 ternary instructions

OPCODE RDEST, RSOURCE1, RESOURCE2

11

3 BACK-END MODIFICATIONS

ADD Addition with overflow
ADDU Addition without overflow
AND and bitwise
DIV Divide with overflow (pseudoinstruction)
DIVU Divide without overflow immediate (pseudoinstruction)
MUL Multiply without overflow
MULO Multiply with overflow (pseudoinstruction)
MULOU Unsigned multiply with overflow (pseudoinstruction)
NOR nor bitwise
OR or bitwise
REM Remainder (pseudoinstruction)
REMU Unsigned remainder (pseudoinstruction)
SLLV Shift left logical variable
SRAV Shift right arithmetic variable
SRLV Shift right logical variable
ROL Rotate Left (pseudoinstruction)
ROR Rotate Right (pseudoinstruction)
SUB Subtract with overflow
SUBU Subtract without overflow
XOR Exclusive or
SLT Set less than
SLTU Set less than unsigned
SEQ Set equal (pseudoinstruction)
SGE Set greater than equal (pseudoinstruction)
SGEU Set greater than equal unsigned (pseudoinstruction)
SGT Set greater than (pseudoinstruction)
SGTU Set greater than unsigned (pseudoinstruction)
SLE Set less than equal (pseudoinstruction)
SLEU Set less than equal unsigned (pseudoinstruction)
SNE Set not equal (pseudoinstruction)
MOVN Move conditional not zero
MOVZ Move conditional zero

12

3 BACK-END MODIFICATIONS

3.2 binary immediate instructions

OPCODE RDEST, RSOURCE1, IMMEDIATE
ADDI Addition immediate with overflow
ADDIU Addition immediate without overflow
ANDI and bitwise immediate
ORI or bitwise immediate
SLL Shift left logical
SRA Shift rigth arithmetic
SRL Shift rigth logical
XORI xor immediate
SLTI Set less than immediate
SLTIU Set less than unsigned immediate

3.3 binary instructions

OPCODE RDEST, RSOURCE1
ABS Absolute Value
CLO Count leading ones
CLZ Count leading zeros
DIV Divide with overflow (quotient in register lo and the remainder in register hi)
DIVU Divide without overflow immediate (quotient in register lo and the remainder in register hi)
MULT Signed Multiply (low-order word in lo and high-order word in hi)
MULTU Unsigned Multiply (low-order word in lo and high-order word in hi)
MADD Multiply add (64 bit result in the concatenated register lo and hi)
MADDU Unsigned multiply add (64 bit result in the concatenated register lo and hi)
MSUB Multiply subtract (64 bit result in the concatenated register lo and hi)
NEG Negate value with overflow (pseudoinstruction)
NEGU Negate value without overflow (pseudoinstruction)
NOT bitwise negation (pseudoinstruction)
JALR Jump and link register
TEQ Trap if equal
TNE Trap if not equal
TGE Trap if greater equal
TGEU Unsigned Trap if greater equal
TLT Trap if less than
TLTU Unsigned Trap if less than
MOVE Move

13

3 BACK-END MODIFICATIONS

3.4 unary immediate instructions

OPCODE RDEST, IMMEDIATE
LUI Load upper immediate
LI Load immediate (pseudoinstruction)
TEQI Trap if equal immediate
TNEI Trap if not equal immediate
TGEI Trap if greater equal immediate
TGEIU Unsigned trap if greater equal immediate
TLTI Trap if less than immediate
TLTIU Unsigned Trap if less than immediate

3.5 unary instructions

OPCODE RDEST
JR Jump register
MFHI Move from hi
MFLO Move from lo
MTHI Move to hi
MTLO Move to lo

3.6 binary jump instructions

OPCODE RSOURCE1, RESOURCE2, LABEL
BEQ Branch on equal
BNE Branch on not equal
BGE Branch on greater than equal (pseudoinstruction)
BGEU Branch on greater than equal unsigned (pseudoinstruction)
BGT Branch on greater than (pseudoinstruction)
BGTU Branch on greater than unsigned (pseudoinstruction)
BLE Branch on less than equal (pseudoinstruction)
BLEU Branch on less than equal unsigned (pseudoinstruction)
BLT Branch on less than (pseudoinstruction)
BLTU Branch on less than unsigned (pseudoinstruction)
BNEZ Branch on not equal zero (pseudoinstruction)

14

3 BACK-END MODIFICATIONS

3.7 unary jump instructions

OPCODE RSOURCE1, LABEL
BGEZ Branch on greater than equal zero
BGEZAL Branch on greater than equal zero and link
BGTZ Branch on greater than zero
BLEZ Branch on less than equal zero
BLTZAL Branch on less than and link
BLTZ Branch on less than zero
BEQZ Branch on equal zero (pseudoinstruction)

3.8 unconditionally jump

OPCODE
B Unconditionally Branch
J Unconditionally
JAL Jump and link

15

3 BACK-END MODIFICATIONS

3.9 load/store instructions

LOAD/STORE instruction are the only way to access memory.
LA Load Address
LB Load Byte
LBU Load unsigned byte
LH Load Halfword
LHU Load unsigned halfword
LW Load word
LWC1 Load word coprocessor 1
LWL Load word left
LWR Load word right
LD Load doubleword (pseudoinstruction)
ULH Unaligned load halfword (pseudoinstruction)
ULHU Unaligned load halfword unsigned (pseudoinstruction)
ULW Unaligned load word (pseudoinstruction)
SB Store Byte
SH Store Halfword
SW Store word
SWC1 Store word coprocessor 1
SDC1 Store double coprocessor 1
SWL Store word left
SWR Store word right
SD Store doubleword
USH Unaligned Store halfword (pseudoinstruction)
USW Unaligned Store word (pseudoinstruction)

3.10 special instructions

NOP
SYSCALL

16

4 FRONT-END MODIFICATIONS

4 Front-End Modifications

Other modifications for the ACSE compiler included the implementation of
the Switch structure and the Break and Continue statements. Implementing
support for such statements helps to increase the functionality of the ACSE
compiler. The changes for achieve this operation were made mainly in the
front-end of the compiler, and especificaly to the Lexical Analyzer and the
Parser. Inside the lexical analyzer the support for the new tokens were added,
while in the parser the actions and the new grammatical rules were defined.
The explanation of the operation and the limitations of the new structures
are discussed in the following subsections.

4.1 Switch

In order to implement the switch structure three grammar rules were added
to the acse.y file. These rules act to detect the structure of the switch, the
structure of the set of cases + default, and the structure of each individual
case. A summary of the grammar rules is shown in the Figure 2.

Figure 2: Grammar Rules for Switch

From the grammar rules is easy to notice that the structure can switch
expressions such as a+b, a-b, a, like the real C-like switch. Is also notice-
able that the default statemente should be put after the last case, as this
was motivated for the way we implemented the operation of the structure.
Basically the structure works in this way: When the switch clause and the
condition are recognized, the end label of the switch and the register holding
the condition are stored, and the case clause begins to be recognized. When
the case and the value of the case are recognized, a comparison between the
condition and the value is performed, followed by a branch instruction which
will allow to perform or to skip the execution of the statements between the
case. If the statements are executed, an unconditional jump to the end label

17

4 FRONT-END MODIFICATIONS

of the switch structure is performed. The same metodology is implemented
for all the cases, and finally if any condition was satisfied the statements un-
der the default clause are performed. The big challenge when implementing
the switch was to find a way to store the end label and the condition to be
evaluated before entering each case. The solution was found using a stack
(t list) from the class collections.c to store them. This implementation allows
also to create nested switches completely funtionals, since with the stack is
easy to use always the right labels and conditions. The switch was proved
compiling single switches and nested switches, and the results were satisfac-
tory under the MACE architecture. The only constraint to use the MACE
architecture is to comment the insertion of a NOP instruction (seems that
the Assembler compiler doesn’t support NOP instructions) in the end label
of the switch, and to use instead a harmless instruction (we used instead a
ADD R0 R0 R0). Some compiled examples can be found inside the folder
tests, contained in the front-end folder of the project.

4.2 Continue and Break

The Continue and the Break statements were implemented inside all the
loops (Do while, while and for), creating the needed unconditional branch
instructions. The grammar rules for Break and Continue were added to a
copy of code block, called code block bc, and then this rule was used inside
the loops statements and the if statement. In order to make those instructions
to work in the correct way we implemented again the stack t list to store the
ID of the label where to go next if the parser found a continue or a break.
To separate the Break and the Continue we used two different lists for each
one. The IDs are added to the top of the list when a condition label(continue
list, step label in case of a for) or a end label (break list) is created inside
the loops. Then if a break or a continue is found, the jump instruction is
created with the first element of the list. After each loop, the first element
of the list is deleted. Some compiled examples can be found inside the folder
tests, contained in the front-end folder of the project.

18

